YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Towards Foundation Models for Zero-Shot Time Series Anomaly Detection: Leveraging Synthetic Data and Relative Context Discrepancy
This repository contains the implementation of Time-RCD for time series anomaly detection, integrated with the TSB-AD (Time Series Benchmark for Anomaly Detection) datasets.
Project Structure
.
βββ checkpoints/ # Pre-trained model checkpoints
βββ datasets/ # TSB-AD datasets (univariate and multivariate)
βββ evaluation/ # Evaluation metrics and visualization tools
βββ models/ # Model implementations
β βββ time_rcd/ # Time-RCD model components
βββ utils/ # Utility functions
βββ testing.py # Main entry point
βββ model_wrapper.py # Model wrapper for different algorithms
βββ README.md # This file
Prerequisites
- Python 3.10
- conda (recommended for environment management)
- Git
Installation
1. Create and Activate Conda Environment
conda create -n Time-RCD python=3.10
conda activate Time-RCD
2. Download the Repository
wget https://anonymous.4open.science/api/repo/TimeRCD-5BE1/zip -O Time-RCD.zip
unzip Time-RCD.zip -d Time-RCD
or dowload from the link: https://anonymous.4open.science/r/TimeRCD-5BE1 and unzip
3. Download TSB-AD Datasets
Create the datasets directory and download the TSB-AD-U (univariate) and TSB-AD-M (multivariate) datasets:
mkdir -p "datasets" \
&& wget -O "datasets/TSB-AD-U.zip" "https://www.thedatum.org/datasets/TSB-AD-U.zip" \
&& wget -O "datasets/TSB-AD-M.zip" "https://www.thedatum.org/datasets/TSB-AD-M.zip" \
&& cd datasets \
&& unzip TSB-AD-U.zip && rm TSB-AD-U.zip \
&& unzip TSB-AD-M.zip && rm TSB-AD-M.zip \
&& cd ..
4. Install Python Dependencies
Option A: Fast Install (using uv)
pip install uv
uv pip install jaxtyping einops pandas numpy scikit-learn transformers torch torchvision statsmodels matplotlib seaborn -U "huggingface_hub[cli]"
Option B: Normal Install
pip install jaxtyping einops pandas numpy scikit-learn transformers torch torchvision statsmodels matplotlib seaborn -U "huggingface_hub[cli]"
5. Download Pre-trained Checkpoints
Download the pre-trained model checkpoints from Hugging Face:
huggingface-cli download thu-sail-lab/Time-RCD checkpoints.zip --local-dir ./
unzip checkpoints.zip
Single Variable Time Series
To run anomaly detection on univariate time series:
python testing.py
Multi-Variable Time Series
To run anomaly detection on multivariate time series:
python testing.py --mode multi
- Downloads last month
- 105
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support