---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- generated_from_trainer
datasets:
- timarni/mmlu-stem-alpaca
model-index:
- name: outputs/qwen3_mmlu_alpaca_lr_5e-5
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.9.2`
```yaml
base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/mmlu-stem-alpaca
type: alpaca
split: train
val_set_size: 0.15
output_dir: ./outputs/qwen3_mmlu_alpaca_lr_5e-5
dataset_prepared_path: last_run_prepared
sequence_len: 4096 #2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3-0.6B-mmlu_alpaca_style_lr_5e-5
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 5
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00005 # 0.0002
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
```
# outputs/qwen3_mmlu_alpaca_lr_5e-5
This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the timarni/mmlu-stem-alpaca dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2293
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- total_eval_batch_size: 2
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5211 | 0.0952 | 1 | 0.5254 |
| 0.3878 | 0.2857 | 3 | 0.2026 |
| 0.0918 | 0.5714 | 6 | 0.1485 |
| 0.108 | 0.8571 | 9 | 0.1240 |
| 0.116 | 1.0952 | 12 | 0.1226 |
| 0.0992 | 1.3810 | 15 | 0.1217 |
| 0.0803 | 1.6667 | 18 | 0.2010 |
| 0.0557 | 1.9524 | 21 | 0.1384 |
| 0.0627 | 2.1905 | 24 | 0.1467 |
| 0.0315 | 2.4762 | 27 | 0.1556 |
| 0.0454 | 2.7619 | 30 | 0.2070 |
| 0.0118 | 3.0 | 33 | 0.2289 |
| 0.0461 | 3.2857 | 36 | 0.2317 |
| 0.0082 | 3.5714 | 39 | 0.2292 |
| 0.029 | 3.8571 | 42 | 0.2290 |
| 0.0138 | 4.0952 | 45 | 0.2299 |
| 0.0178 | 4.3810 | 48 | 0.2293 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1