--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-0.6B-Base tags: - generated_from_trainer datasets: - timarni/mmlu-stem-alpaca model-index: - name: outputs/qwen3_mmlu_alpaca_lr_5e-5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.9.2` ```yaml base_model: Qwen/Qwen3-0.6B-Base # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin strict: false chat_template: qwen3 datasets: - path: timarni/mmlu-stem-alpaca type: alpaca split: train val_set_size: 0.15 output_dir: ./outputs/qwen3_mmlu_alpaca_lr_5e-5 dataset_prepared_path: last_run_prepared sequence_len: 4096 #2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: mnlp_project wandb_entity: tim-arni wandb_watch: wandb_name: qwen3-0.6B-mmlu_alpaca_style_lr_5e-5 wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 5 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00005 # 0.0002 bf16: auto tf32: true gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: false resume_from_checkpoint: logging_steps: 1 flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.0 special_tokens: ```

# outputs/qwen3_mmlu_alpaca_lr_5e-5 This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the timarni/mmlu-stem-alpaca dataset. It achieves the following results on the evaluation set: - Loss: 0.2293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - total_eval_batch_size: 2 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5211 | 0.0952 | 1 | 0.5254 | | 0.3878 | 0.2857 | 3 | 0.2026 | | 0.0918 | 0.5714 | 6 | 0.1485 | | 0.108 | 0.8571 | 9 | 0.1240 | | 0.116 | 1.0952 | 12 | 0.1226 | | 0.0992 | 1.3810 | 15 | 0.1217 | | 0.0803 | 1.6667 | 18 | 0.2010 | | 0.0557 | 1.9524 | 21 | 0.1384 | | 0.0627 | 2.1905 | 24 | 0.1467 | | 0.0315 | 2.4762 | 27 | 0.1556 | | 0.0454 | 2.7619 | 30 | 0.2070 | | 0.0118 | 3.0 | 33 | 0.2289 | | 0.0461 | 3.2857 | 36 | 0.2317 | | 0.0082 | 3.5714 | 39 | 0.2292 | | 0.029 | 3.8571 | 42 | 0.2290 | | 0.0138 | 4.0952 | 45 | 0.2299 | | 0.0178 | 4.3810 | 48 | 0.2293 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.5.1+cu121 - Datasets 3.5.1 - Tokenizers 0.21.1