--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-0.6B-Base tags: - generated_from_trainer datasets: - timarni/s1k_r1_clean model-index: - name: outputs/qwen3_s1k results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.9.2` ```yaml base_model: Qwen/Qwen3-0.6B-Base # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin strict: false chat_template: qwen3 datasets: - path: /mloscratch/users/arni/Workspace/mnlp_sft/datasets/s1k.json type: chat_template split: train field_messages: conversations # message_property_mappings: # role: from # content: value output_dir: ./outputs/qwen3_s1k dataset_prepared_path: last_run_prepared # To be sure that no LORA is done adapter: null lora: false merge_lora: false sequence_len: 4096 #2048 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: mnlp_project wandb_entity: tim-arni wandb_watch: wandb_name: qwen3_s1k wandb_log_model: gradient_accumulation_steps: 2 # 16 following https://unsloth.ai/blog/qwen3 micro_batch_size: 1 # 2 num_epochs: 5 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00005 # 0.0002 cosine_min_lr_ratio: 0.1 bf16: auto tf32: true gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: false resume_from_checkpoint: logging_steps: 1 gradient_clipping: 1.0 flash_attention: true warmup_ratio: 0.03 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 1e-4 special_tokens: ```

# outputs/qwen3_s1k This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the /mloscratch/users/arni/Workspace/mnlp_sft/datasets/s1k.json dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 6 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.5.1+cu121 - Datasets 3.5.1 - Tokenizers 0.21.1