Add model
Browse files- README.md +264 -0
- config.json +35 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- timm
|
5 |
+
library_tag: timm
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
- laion-2b
|
10 |
+
---
|
11 |
+
# Model card for convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384
|
12 |
+
|
13 |
+
A ConvNeXt image classification model. CLIP image tower weights pretrained in [OpenCLIP](https://github.com/mlfoundations/open_clip) on LAION and fine-tuned on ImageNet-12k followed by ImageNet-1k in `timm` bby Ross Wightman.
|
14 |
+
|
15 |
+
Please see related OpenCLIP model cards for more details on pretrain:
|
16 |
+
* https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup
|
17 |
+
* https://huggingface.co/laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg
|
18 |
+
* https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg
|
19 |
+
* https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K
|
20 |
+
|
21 |
+
|
22 |
+
## Model Details
|
23 |
+
- **Model Type:** Image classification / feature backbone
|
24 |
+
- **Model Stats:**
|
25 |
+
- Params (M): 200.1
|
26 |
+
- GMACs: 101.1
|
27 |
+
- Activations (M): 126.7
|
28 |
+
- Image size: 384 x 384
|
29 |
+
- **Papers:**
|
30 |
+
- LAION-5B: An open large-scale dataset for training next generation image-text models: https://arxiv.org/abs/2210.08402
|
31 |
+
- A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545
|
32 |
+
- Learning Transferable Visual Models From Natural Language Supervision: https://arxiv.org/abs/2103.00020
|
33 |
+
- **Original:** https://github.com/mlfoundations/open_clip
|
34 |
+
- **Pretrain Dataset:** LAION-2B
|
35 |
+
- **Dataset:** ImageNet-1k
|
36 |
+
|
37 |
+
## Model Usage
|
38 |
+
### Image Classification
|
39 |
+
```python
|
40 |
+
from urllib.request import urlopen
|
41 |
+
from PIL import Image
|
42 |
+
import timm
|
43 |
+
|
44 |
+
img = Image.open(urlopen(
|
45 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
46 |
+
))
|
47 |
+
|
48 |
+
model = timm.create_model('convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384', pretrained=True)
|
49 |
+
model = model.eval()
|
50 |
+
|
51 |
+
# get model specific transforms (normalization, resize)
|
52 |
+
data_config = timm.data.resolve_model_data_config(model)
|
53 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
54 |
+
|
55 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
56 |
+
|
57 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
58 |
+
```
|
59 |
+
|
60 |
+
### Feature Map Extraction
|
61 |
+
```python
|
62 |
+
from urllib.request import urlopen
|
63 |
+
from PIL import Image
|
64 |
+
import timm
|
65 |
+
|
66 |
+
img = Image.open(urlopen(
|
67 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
68 |
+
))
|
69 |
+
|
70 |
+
model = timm.create_model(
|
71 |
+
'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384',
|
72 |
+
pretrained=True,
|
73 |
+
features_only=True,
|
74 |
+
)
|
75 |
+
model = model.eval()
|
76 |
+
|
77 |
+
# get model specific transforms (normalization, resize)
|
78 |
+
data_config = timm.data.resolve_model_data_config(model)
|
79 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
80 |
+
|
81 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
82 |
+
|
83 |
+
for o in output:
|
84 |
+
# print shape of each feature map in output
|
85 |
+
# e.g.:
|
86 |
+
# torch.Size([1, 192, 96, 96])
|
87 |
+
# torch.Size([1, 384, 48, 48])
|
88 |
+
# torch.Size([1, 768, 24, 24])
|
89 |
+
# torch.Size([1, 1536, 12, 12])
|
90 |
+
|
91 |
+
print(o.shape)
|
92 |
+
```
|
93 |
+
|
94 |
+
### Image Embeddings
|
95 |
+
```python
|
96 |
+
from urllib.request import urlopen
|
97 |
+
from PIL import Image
|
98 |
+
import timm
|
99 |
+
|
100 |
+
img = Image.open(urlopen(
|
101 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
102 |
+
))
|
103 |
+
|
104 |
+
model = timm.create_model(
|
105 |
+
'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384',
|
106 |
+
pretrained=True,
|
107 |
+
num_classes=0, # remove classifier nn.Linear
|
108 |
+
)
|
109 |
+
model = model.eval()
|
110 |
+
|
111 |
+
# get model specific transforms (normalization, resize)
|
112 |
+
data_config = timm.data.resolve_model_data_config(model)
|
113 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
114 |
+
|
115 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
116 |
+
|
117 |
+
# or equivalently (without needing to set num_classes=0)
|
118 |
+
|
119 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
120 |
+
# output is unpooled, a (1, 1536, 12, 12) shaped tensor
|
121 |
+
|
122 |
+
output = model.forward_head(output, pre_logits=True)
|
123 |
+
# output is a (1, num_features) shaped tensor
|
124 |
+
```
|
125 |
+
|
126 |
+
## Model Comparison
|
127 |
+
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|
128 |
+
|
129 |
+
All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.
|
130 |
+
|
131 |
+
| model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
|
132 |
+
|------------------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
|
133 |
+
| [convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512) |88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 |
|
134 |
+
| [convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384) |88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 |
|
135 |
+
| [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k) |88.612|98.704|256 |846.47 |198.09|124.45|122.45 |256 |
|
136 |
+
| [convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384) |88.312|98.578|384 |200.13 |101.11|126.74|196.84 |256 |
|
137 |
+
| [convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384) |88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 |
|
138 |
+
| [convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320) |87.968|98.47 |320 |200.13 |70.21 |88.02 |283.42 |256 |
|
139 |
+
| [convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384) |87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 |
|
140 |
+
| [convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384) |87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 |
|
141 |
+
| [convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384) |87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 |
|
142 |
+
| [convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k) |87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 |
|
143 |
+
| [convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k) |87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 |
|
144 |
+
| [convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384) |87.138|98.212|384 |88.59 |45.21 |84.49 |365.47 |256 |
|
145 |
+
| [convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k) |87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 |
|
146 |
+
| [convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384) |86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 |
|
147 |
+
| [convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k) |86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 |
|
148 |
+
| [convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k) |86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 |
|
149 |
+
| [convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384) |86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 |
|
150 |
+
| [convnext_base.clip_laion2b_augreg_ft_in12k_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k) |86.344|97.97 |256 |88.59 |20.09 |37.55 |816.14 |256 |
|
151 |
+
| [convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k) |86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 |
|
152 |
+
| [convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384) |86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 |
|
153 |
+
| [convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k) |86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 |
|
154 |
+
| [convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k) |85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 |
|
155 |
+
| [convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384) |85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 |
|
156 |
+
| [convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k) |85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 |
|
157 |
+
| [convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k) |85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 |
|
158 |
+
| [convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384) |85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 |
|
159 |
+
| [convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384) |85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 |
|
160 |
+
| [convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k) |84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 |
|
161 |
+
| [convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k) |84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 |
|
162 |
+
| [convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k) |84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 |
|
163 |
+
| [convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k) |84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 |
|
164 |
+
| [convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384) |84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 |
|
165 |
+
| [convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k) |83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 |
|
166 |
+
| [convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k) |83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 |
|
167 |
+
| [convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384) |83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 |
|
168 |
+
| [convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k) |83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 |
|
169 |
+
| [convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k) |82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 |
|
170 |
+
| [convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k) |82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 |
|
171 |
+
| [convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k) |82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 |
|
172 |
+
| [convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k) |82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 |
|
173 |
+
| [convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k) |82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 |
|
174 |
+
| [convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k) |82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 |
|
175 |
+
| [convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k) |81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 |
|
176 |
+
| [convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k) |80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 |
|
177 |
+
| [convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k) |80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 |
|
178 |
+
| [convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k) |80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 |
|
179 |
+
| [convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k) |79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 |
|
180 |
+
| [convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k) |79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 |
|
181 |
+
| [convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k) |78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 |
|
182 |
+
| [convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k) |77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 |
|
183 |
+
| [convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k) |77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 |
|
184 |
+
| [convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k) |76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 |
|
185 |
+
| [convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k) |75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 |
|
186 |
+
| [convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k) |75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 |
|
187 |
+
|
188 |
+
## Citation
|
189 |
+
```bibtex
|
190 |
+
@software{ilharco_gabriel_2021_5143773,
|
191 |
+
author = {Ilharco, Gabriel and
|
192 |
+
Wortsman, Mitchell and
|
193 |
+
Wightman, Ross and
|
194 |
+
Gordon, Cade and
|
195 |
+
Carlini, Nicholas and
|
196 |
+
Taori, Rohan and
|
197 |
+
Dave, Achal and
|
198 |
+
Shankar, Vaishaal and
|
199 |
+
Namkoong, Hongseok and
|
200 |
+
Miller, John and
|
201 |
+
Hajishirzi, Hannaneh and
|
202 |
+
Farhadi, Ali and
|
203 |
+
Schmidt, Ludwig},
|
204 |
+
title = {OpenCLIP},
|
205 |
+
month = jul,
|
206 |
+
year = 2021,
|
207 |
+
note = {If you use this software, please cite it as below.},
|
208 |
+
publisher = {Zenodo},
|
209 |
+
version = {0.1},
|
210 |
+
doi = {10.5281/zenodo.5143773},
|
211 |
+
url = {https://doi.org/10.5281/zenodo.5143773}
|
212 |
+
}
|
213 |
+
```
|
214 |
+
```bibtex
|
215 |
+
@inproceedings{schuhmann2022laionb,
|
216 |
+
title={{LAION}-5B: An open large-scale dataset for training next generation image-text models},
|
217 |
+
author={Christoph Schuhmann and
|
218 |
+
Romain Beaumont and
|
219 |
+
Richard Vencu and
|
220 |
+
Cade W Gordon and
|
221 |
+
Ross Wightman and
|
222 |
+
Mehdi Cherti and
|
223 |
+
Theo Coombes and
|
224 |
+
Aarush Katta and
|
225 |
+
Clayton Mullis and
|
226 |
+
Mitchell Wortsman and
|
227 |
+
Patrick Schramowski and
|
228 |
+
Srivatsa R Kundurthy and
|
229 |
+
Katherine Crowson and
|
230 |
+
Ludwig Schmidt and
|
231 |
+
Robert Kaczmarczyk and
|
232 |
+
Jenia Jitsev},
|
233 |
+
booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
|
234 |
+
year={2022},
|
235 |
+
url={https://openreview.net/forum?id=M3Y74vmsMcY}
|
236 |
+
}
|
237 |
+
```
|
238 |
+
```bibtex
|
239 |
+
@misc{rw2019timm,
|
240 |
+
author = {Ross Wightman},
|
241 |
+
title = {PyTorch Image Models},
|
242 |
+
year = {2019},
|
243 |
+
publisher = {GitHub},
|
244 |
+
journal = {GitHub repository},
|
245 |
+
doi = {10.5281/zenodo.4414861},
|
246 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
247 |
+
}
|
248 |
+
```
|
249 |
+
```bibtex
|
250 |
+
@inproceedings{Radford2021LearningTV,
|
251 |
+
title={Learning Transferable Visual Models From Natural Language Supervision},
|
252 |
+
author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
|
253 |
+
booktitle={ICML},
|
254 |
+
year={2021}
|
255 |
+
}
|
256 |
+
```
|
257 |
+
```bibtex
|
258 |
+
@article{liu2022convnet,
|
259 |
+
author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
|
260 |
+
title = {A ConvNet for the 2020s},
|
261 |
+
journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
262 |
+
year = {2022},
|
263 |
+
}
|
264 |
+
```
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architecture": "convnext_large_mlp",
|
3 |
+
"num_classes": 1000,
|
4 |
+
"num_features": 1536,
|
5 |
+
"pretrained_cfg": {
|
6 |
+
"tag": "clip_laion2b_soup_ft_in12k_in1k_384",
|
7 |
+
"custom_load": false,
|
8 |
+
"input_size": [
|
9 |
+
3,
|
10 |
+
384,
|
11 |
+
384
|
12 |
+
],
|
13 |
+
"fixed_input_size": false,
|
14 |
+
"interpolation": "bicubic",
|
15 |
+
"crop_pct": 1.0,
|
16 |
+
"crop_mode": "squash",
|
17 |
+
"mean": [
|
18 |
+
0.48145466,
|
19 |
+
0.4578275,
|
20 |
+
0.40821073
|
21 |
+
],
|
22 |
+
"std": [
|
23 |
+
0.26862954,
|
24 |
+
0.26130258,
|
25 |
+
0.27577711
|
26 |
+
],
|
27 |
+
"num_classes": 1000,
|
28 |
+
"pool_size": [
|
29 |
+
12,
|
30 |
+
12
|
31 |
+
],
|
32 |
+
"first_conv": "stem.0",
|
33 |
+
"classifier": "head.fc"
|
34 |
+
}
|
35 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06f5cfc2d9725abef282a1f416a80cfd20449a4d331e0bd439b56c0697725be7
|
3 |
+
size 800547534
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69e74515dbb027d5b6e1d9a1d8d05b1bab20cb845e10cb17395fecbaa51c976f
|
3 |
+
size 800642869
|