Upload folder using huggingface_hub
Browse files- README.md +248 -0
- chat_template.jinja +138 -0
- config.json +48 -0
- configuration_longcat_flash.py +216 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_longcat_flash.py +648 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1810 -0
README.md
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
inference: true
|
5 |
+
widget:
|
6 |
+
- text: Hello!
|
7 |
+
example_title: Hello world
|
8 |
+
group: Python
|
9 |
+
base_model:
|
10 |
+
- meituan-longcat/LongCat-Flash-Chat
|
11 |
+
---
|
12 |
+
|
13 |
+
This tiny model is for debugging. It is randomly initialized with the config adapted from [meituan-longcat/LongCat-Flash-Chat](https://huggingface.co/meituan-longcat/LongCat-Flash-Chat).
|
14 |
+
|
15 |
+
### Example usage:
|
16 |
+
|
17 |
+
- vLLM
|
18 |
+
|
19 |
+
```bash
|
20 |
+
vllm serve tiny-random/longcat-flash \
|
21 |
+
--trust-remote-code \
|
22 |
+
--enable-expert-parallel \
|
23 |
+
--tensor-parallel-size 1 \
|
24 |
+
--speculative_config '{"model": "tiny-random/longcat-flash", "num_speculative_tokens": 1, "method":"longcat_flash_mtp"}'
|
25 |
+
|
26 |
+
```
|
27 |
+
|
28 |
+
- SGLang
|
29 |
+
|
30 |
+
```bash
|
31 |
+
python3 -m sglang.launch_server \
|
32 |
+
--model tiny-random/longcat-flash \
|
33 |
+
--trust-remote-code \
|
34 |
+
--attention-backend flashinfer \
|
35 |
+
--enable-ep-moe \
|
36 |
+
--tp 1 \
|
37 |
+
--speculative-draft-model-path tiny-random/longcat-flash \
|
38 |
+
--speculative-algorithm NEXTN \
|
39 |
+
--speculative-num-draft-tokens 2 \
|
40 |
+
--speculative-num-steps 1 \
|
41 |
+
--speculative-eagle-topk 1
|
42 |
+
```
|
43 |
+
|
44 |
+
- Transformers
|
45 |
+
|
46 |
+
```python
|
47 |
+
import torch
|
48 |
+
import transformers
|
49 |
+
|
50 |
+
model_id = "tiny-random/longcat-flash"
|
51 |
+
pipe = transformers.pipelines.pipeline(
|
52 |
+
'text-generation',
|
53 |
+
model=model_id,
|
54 |
+
trust_remote_code=True,
|
55 |
+
device_map='cuda',
|
56 |
+
torch_dtype=torch.bfloat16,
|
57 |
+
)
|
58 |
+
past_key_values = transformers.DynamicCache(config=None) # set config to None
|
59 |
+
r = pipe('Hello, world!', past_key_values=past_key_values, max_new_tokens=32)
|
60 |
+
print(r)
|
61 |
+
```
|
62 |
+
|
63 |
+
### Codes to create this repo:
|
64 |
+
|
65 |
+
```python
|
66 |
+
import json
|
67 |
+
from copy import deepcopy
|
68 |
+
from pathlib import Path
|
69 |
+
|
70 |
+
import torch
|
71 |
+
import torch.nn as nn
|
72 |
+
from huggingface_hub import file_exists, hf_hub_download
|
73 |
+
from transformers import (
|
74 |
+
AutoConfig,
|
75 |
+
AutoModelForCausalLM,
|
76 |
+
AutoProcessor,
|
77 |
+
AutoTokenizer,
|
78 |
+
GenerationConfig,
|
79 |
+
set_seed,
|
80 |
+
)
|
81 |
+
from transformers.models.glm4_moe.modeling_glm4_moe import Glm4MoeRMSNorm
|
82 |
+
source_model_id = "meituan-longcat/LongCat-Flash-Chat"
|
83 |
+
save_folder = "/tmp/tiny-random/longcat-flash"
|
84 |
+
|
85 |
+
Path(save_folder).mkdir(parents=True, exist_ok=True)
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(source_model_id, trust_remote_code=True)
|
87 |
+
tokenizer.save_pretrained(save_folder)
|
88 |
+
|
89 |
+
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
|
90 |
+
config_json = json.load(f)
|
91 |
+
for k, v in config_json['auto_map'].items():
|
92 |
+
config_json['auto_map'][k] = f'{source_model_id}--{v}'
|
93 |
+
config_json.update({
|
94 |
+
'num_layers': 2,
|
95 |
+
'hidden_size': 8,
|
96 |
+
'ffn_hidden_size': 64,
|
97 |
+
'expert_ffn_hidden_size': 64,
|
98 |
+
'num_attention_heads': 4,
|
99 |
+
'kv_lora_rank': 384,
|
100 |
+
'n_routed_experts': 32,
|
101 |
+
'q_lora_rank': 32,
|
102 |
+
'qk_nope_head_dim': 64,
|
103 |
+
'qk_rope_head_dim': 192, # vllm mla kernel supports 576 only, FA supports head dim <= 256
|
104 |
+
'v_head_dim': 64,
|
105 |
+
'moe_topk': 12,
|
106 |
+
'zero_expert_num': 16,
|
107 |
+
})
|
108 |
+
# del config_json['quantization_config']
|
109 |
+
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
|
110 |
+
json.dump(config_json, f, indent=2)
|
111 |
+
|
112 |
+
config = AutoConfig.from_pretrained(
|
113 |
+
save_folder,
|
114 |
+
trust_remote_code=True,
|
115 |
+
)
|
116 |
+
print(config)
|
117 |
+
torch.set_default_dtype(torch.bfloat16)
|
118 |
+
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
|
119 |
+
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
|
120 |
+
model.generation_config = GenerationConfig.from_pretrained(
|
121 |
+
source_model_id, trust_remote_code=True,
|
122 |
+
)
|
123 |
+
model = model.cpu()
|
124 |
+
# MTP
|
125 |
+
model.model.mtp = nn.ModuleDict({
|
126 |
+
"layers": nn.ModuleList([nn.ModuleDict(dict(
|
127 |
+
eh_proj=nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False),
|
128 |
+
enorm=nn.ModuleDict({"m": nn.RMSNorm(config.hidden_size)}),
|
129 |
+
hnorm=nn.ModuleDict({"m": nn.RMSNorm(config.hidden_size)}),
|
130 |
+
input_layernorm=nn.RMSNorm(config.hidden_size),
|
131 |
+
post_attention_layernorm=nn.RMSNorm(config.hidden_size),
|
132 |
+
self_attn=deepcopy(model.model.layers[0].self_attn[0]),
|
133 |
+
transformer_layer=nn.ModuleDict({"mlp": deepcopy(model.model.layers[0].mlps[0])}),
|
134 |
+
))]),
|
135 |
+
"norm": nn.RMSNorm(config.hidden_size),
|
136 |
+
})
|
137 |
+
for i in range(config.num_layers):
|
138 |
+
model.model.layers[i].mlp.router = model.model.layers[i].mlp.router.float()
|
139 |
+
# model.model.layers[i].mlp.router.e_score_correction_bias = torch.zeros((config.n_routed_experts + config.zero_expert_num)).float()
|
140 |
+
set_seed(42)
|
141 |
+
with torch.no_grad():
|
142 |
+
for name, p in sorted(model.named_parameters()):
|
143 |
+
torch.nn.init.normal_(p, 0, 0.1)
|
144 |
+
print(name, p.shape, p.dtype)
|
145 |
+
model.model.mtp.embed_tokens = deepcopy(model.model.embed_tokens)
|
146 |
+
|
147 |
+
model.save_pretrained(save_folder)
|
148 |
+
torch.set_default_dtype(torch.float32)
|
149 |
+
|
150 |
+
for n, m in model.named_modules():
|
151 |
+
if 'LongcatFlashMLA' in str(type(m)):
|
152 |
+
print(n, m.layer_idx)
|
153 |
+
|
154 |
+
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f:
|
155 |
+
config_json = json.load(f)
|
156 |
+
config_json['auto_map'] = {k: v.split('--')[-1] for k, v in config_json['auto_map'].items()}
|
157 |
+
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
|
158 |
+
json.dump(config_json, f, indent=2)
|
159 |
+
```
|
160 |
+
|
161 |
+
### Printing the model:
|
162 |
+
|
163 |
+
```text
|
164 |
+
LongcatFlashForCausalLM(
|
165 |
+
(model): LongcatFlashModel(
|
166 |
+
(embed_tokens): Embedding(131072, 8)
|
167 |
+
(layers): ModuleList(
|
168 |
+
(0-1): 2 x LongcatFlashDecoderLayer(
|
169 |
+
(mlp): LongcatFlashMoE(
|
170 |
+
(experts): ModuleList(
|
171 |
+
(0-31): 32 x LongcatFlashMLP(
|
172 |
+
(gate_proj): Linear(in_features=8, out_features=64, bias=False)
|
173 |
+
(up_proj): Linear(in_features=8, out_features=64, bias=False)
|
174 |
+
(down_proj): Linear(in_features=64, out_features=8, bias=False)
|
175 |
+
(act_fn): SiLU()
|
176 |
+
)
|
177 |
+
)
|
178 |
+
(router): LongcatFlashTopkRouter(
|
179 |
+
(classifier): Linear(in_features=8, out_features=48, bias=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(self_attn): ModuleList(
|
183 |
+
(0-1): 2 x LongcatFlashMLA(
|
184 |
+
(q_a_proj): Linear(in_features=8, out_features=32, bias=False)
|
185 |
+
(q_a_layernorm): LongcatFlashRMSNorm((32,), eps=1e-06)
|
186 |
+
(q_b_proj): Linear(in_features=32, out_features=1024, bias=False)
|
187 |
+
(kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False)
|
188 |
+
(kv_a_layernorm): LongcatFlashRMSNorm((384,), eps=1e-06)
|
189 |
+
(kv_b_proj): Linear(in_features=384, out_features=512, bias=False)
|
190 |
+
(o_proj): Linear(in_features=256, out_features=8, bias=False)
|
191 |
+
)
|
192 |
+
)
|
193 |
+
(mlps): ModuleList(
|
194 |
+
(0-1): 2 x LongcatFlashMLP(
|
195 |
+
(gate_proj): Linear(in_features=8, out_features=64, bias=False)
|
196 |
+
(up_proj): Linear(in_features=8, out_features=64, bias=False)
|
197 |
+
(down_proj): Linear(in_features=64, out_features=8, bias=False)
|
198 |
+
(act_fn): SiLU()
|
199 |
+
)
|
200 |
+
)
|
201 |
+
(input_layernorm): ModuleList(
|
202 |
+
(0-1): 2 x LongcatFlashRMSNorm((8,), eps=1e-05)
|
203 |
+
)
|
204 |
+
(post_attention_layernorm): ModuleList(
|
205 |
+
(0-1): 2 x LongcatFlashRMSNorm((8,), eps=1e-05)
|
206 |
+
)
|
207 |
+
)
|
208 |
+
)
|
209 |
+
(norm): LongcatFlashRMSNorm((8,), eps=1e-05)
|
210 |
+
(rotary_emb): LongcatFlashRotaryEmbedding()
|
211 |
+
(mtp): ModuleDict(
|
212 |
+
(layers): ModuleList(
|
213 |
+
(0): ModuleDict(
|
214 |
+
(eh_proj): Linear(in_features=16, out_features=8, bias=False)
|
215 |
+
(enorm): ModuleDict(
|
216 |
+
(m): RMSNorm((8,), eps=None, elementwise_affine=True)
|
217 |
+
)
|
218 |
+
(hnorm): ModuleDict(
|
219 |
+
(m): RMSNorm((8,), eps=None, elementwise_affine=True)
|
220 |
+
)
|
221 |
+
(input_layernorm): RMSNorm((8,), eps=None, elementwise_affine=True)
|
222 |
+
(post_attention_layernorm): RMSNorm((8,), eps=None, elementwise_affine=True)
|
223 |
+
(self_attn): LongcatFlashMLA(
|
224 |
+
(q_a_proj): Linear(in_features=8, out_features=32, bias=False)
|
225 |
+
(q_a_layernorm): LongcatFlashRMSNorm((32,), eps=1e-06)
|
226 |
+
(q_b_proj): Linear(in_features=32, out_features=1024, bias=False)
|
227 |
+
(kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False)
|
228 |
+
(kv_a_layernorm): LongcatFlashRMSNorm((384,), eps=1e-06)
|
229 |
+
(kv_b_proj): Linear(in_features=384, out_features=512, bias=False)
|
230 |
+
(o_proj): Linear(in_features=256, out_features=8, bias=False)
|
231 |
+
)
|
232 |
+
(transformer_layer): ModuleDict(
|
233 |
+
(mlp): LongcatFlashMLP(
|
234 |
+
(gate_proj): Linear(in_features=8, out_features=64, bias=False)
|
235 |
+
(up_proj): Linear(in_features=8, out_features=64, bias=False)
|
236 |
+
(down_proj): Linear(in_features=64, out_features=8, bias=False)
|
237 |
+
(act_fn): SiLU()
|
238 |
+
)
|
239 |
+
)
|
240 |
+
)
|
241 |
+
)
|
242 |
+
(norm): RMSNorm((8,), eps=None, elementwise_affine=True)
|
243 |
+
(embed_tokens): Embedding(131072, 8)
|
244 |
+
)
|
245 |
+
)
|
246 |
+
(lm_head): Linear(in_features=8, out_features=131072, bias=False)
|
247 |
+
)
|
248 |
+
```
|
chat_template.jinja
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- set tool_choice = tool_choice | default('auto') %}
|
2 |
+
{%- set ns = namespace(rounds = 0, tool_types = [], last_query_index = -1) %}
|
3 |
+
|
4 |
+
{%- if tools and tool_choice != 'none' %}
|
5 |
+
{{- "# Tools
|
6 |
+
" }}
|
7 |
+
{{- "You have access to the following tools:
|
8 |
+
|
9 |
+
" }}
|
10 |
+
{%- for tool in tools %}
|
11 |
+
{%- if tool.type in ['code_interpreter', 'function'] %}
|
12 |
+
{%- if tool.type not in ns.tool_types %}
|
13 |
+
{%- set ns.tool_types = ns.tool_types + [tool.type] %}
|
14 |
+
{{- "## Tool namespace: " ~ tool.type ~ "
|
15 |
+
|
16 |
+
" }}
|
17 |
+
{%- endif %}
|
18 |
+
{%- if tool.type == 'code_interpreter' %}
|
19 |
+
{%- set tool = {"type":"code_interpreter","function":{"name":"code_interpreter_preview","description":"The code will be executed in a stateful Jupyter notebook sandbox environment, only supports local computation, data processing, and file operations.
|
20 |
+
Code sandbox environment (network isolated) Any external network requests or online API calls are prohibited.
|
21 |
+
If online functionality is needed, please use other permitted tools.
|
22 |
+
Code will respond with the output of the execution or time out after 60.0 seconds. ","parameters":{"type":"object","properties":{"language":{"type":"string","description":"The programming language of the code to be executed. Available values: python (Default), java, go, js, ts, c, c++."},"code":{"type":"string","description":"Python code to be executed must not include the following:
|
23 |
+
- Importing network libraries such as requests, httplib, etc.
|
24 |
+
- Any form of HTTP requests.
|
25 |
+
- External API calls.
|
26 |
+
- Network port operations. Example: ```python
|
27 |
+
import pandas as pd
|
28 |
+
pd.DataFrame({'A':[1,2]})
|
29 |
+
```"},"timeout":{"type":"number","description":"The maximum execution time of the code, in seconds. Default is 60.0."}}},"required":["code"]}} %}
|
30 |
+
{%- endif %}
|
31 |
+
{{- "### Tool name: " + tool.function.name + "
|
32 |
+
|
33 |
+
" }}
|
34 |
+
{{- "Description: " + tool.function.description + "
|
35 |
+
|
36 |
+
" }}
|
37 |
+
{{- "InputSchema:
|
38 |
+
" + tool.function.parameters | tojson(indent=2) + "
|
39 |
+
|
40 |
+
" }}
|
41 |
+
{%- endif %}
|
42 |
+
{%- endfor %}
|
43 |
+
{{- '**Note**: For each function call, return a json object with function name and arguments within <longcat_tool_call></longcat_tool_call> XML tags as follows:
|
44 |
+
<longcat_tool_call>
|
45 |
+
{"name": <function-name>, "arguments": <args-dict>}
|
46 |
+
</longcat_tool_call>
|
47 |
+
' }}
|
48 |
+
{{- 'When multiple functions need to be called simultaneously, each function call should be wrapped in its own <longcat_tool_call> tag and placed consecutively. For example:
|
49 |
+
<longcat_tool_call>
|
50 |
+
{"name": <function-name>, "arguments": <args-dict>}
|
51 |
+
</longcat_tool_call><longcat_tool_call>
|
52 |
+
{"name": <function-name>, "arguments": <args-dict>}
|
53 |
+
</longcat_tool_call>
|
54 |
+
|
55 |
+
' }}
|
56 |
+
{{- "# Messages
|
57 |
+
" }}
|
58 |
+
|
59 |
+
{%- for idx in range(messages|length - 1) %}
|
60 |
+
{%- set msg = messages[idx] %}
|
61 |
+
{%- if msg.role == 'assistant' and not msg.tool_calls %}
|
62 |
+
{%- set ns.last_query_index = idx %}
|
63 |
+
{%- endif %}
|
64 |
+
{%- endfor%}
|
65 |
+
{%- endif %}
|
66 |
+
|
67 |
+
{%- for msg in messages %}
|
68 |
+
{%- if msg.role == "system" %}
|
69 |
+
{{- "SYSTEM:" + msg.content }}
|
70 |
+
{%- elif msg.role == "user" %}
|
71 |
+
{%- if loop.first %}
|
72 |
+
{{- "[Round " ~ (ns.rounds) ~ "] USER:" }}
|
73 |
+
{%- else %}
|
74 |
+
{{- " [Round " ~ (ns.rounds) ~ "] USER:"}}
|
75 |
+
{%- endif %}
|
76 |
+
{%- set ns.rounds = ns.rounds + 1 %}
|
77 |
+
{%- if msg["files"] %}
|
78 |
+
{{- '<longcat_files>
|
79 |
+
' ~ msg.files | tojson(indent=2) ~ '
|
80 |
+
</longcat_files>' }}
|
81 |
+
{%- endif %}
|
82 |
+
{{- msg.content }}
|
83 |
+
{%- elif msg.role == "assistant" %}
|
84 |
+
{{- " ASSISTANT:" }}
|
85 |
+
{%- if enable_thinking == true and msg.reasoning_content and ns.tool_types != [] and loop.index0 > ns.last_query_index %}
|
86 |
+
{{- "
|
87 |
+
<longcat_think>
|
88 |
+
" ~ msg.reasoning_content ~ "
|
89 |
+
</longcat_think>
|
90 |
+
" }}
|
91 |
+
{%- endif %}
|
92 |
+
{%- if msg.content%}
|
93 |
+
{{- msg.content }}
|
94 |
+
{%- endif %}
|
95 |
+
{%- if msg.tool_calls %}
|
96 |
+
{%- for tool_call in msg.tool_calls -%}
|
97 |
+
{{- "<longcat_tool_call>
|
98 |
+
" -}}
|
99 |
+
{%- if tool_call.function.arguments is string -%}
|
100 |
+
{"name": "{{ tool_call.function.name}}", "arguments": {{tool_call.function.arguments}}}
|
101 |
+
{%- else -%}
|
102 |
+
{"name": "{{ tool_call.function.name}}", "arguments": {{tool_call.function.arguments | tojson}}}
|
103 |
+
{%- endif -%}
|
104 |
+
{{- "
|
105 |
+
</longcat_tool_call>" }}
|
106 |
+
{%- endfor %}
|
107 |
+
{%- endif %}
|
108 |
+
{{- "</longcat_s>" -}}
|
109 |
+
{%- elif msg.role == "tool" %}
|
110 |
+
{{- " TOOL:" -}}
|
111 |
+
{%- if msg.name -%}
|
112 |
+
{"name": {{msg.name | tojson}}, "content": {{msg.content | tojson}}}
|
113 |
+
{%- else -%}
|
114 |
+
{"content": {{msg.content | tojson}}}
|
115 |
+
{%- endif -%}
|
116 |
+
{%- endif %}
|
117 |
+
{%- endfor %}
|
118 |
+
{%- if add_generation_prompt %}
|
119 |
+
{%- if enable_thinking == true %}
|
120 |
+
{{- " /think_on" }}
|
121 |
+
{%- if thinking_budget %}
|
122 |
+
{%- if thinking_budget < 1024 %}
|
123 |
+
{%- set thinking_budget = 1024 %}
|
124 |
+
{%- endif%}
|
125 |
+
{{- "
|
126 |
+
thinking_budget: < " ~ thinking_budget ~ "."}}
|
127 |
+
{%- endif %}
|
128 |
+
{{- " ASSISTANT:<longcat_think>
|
129 |
+
"}}
|
130 |
+
{%- elif enable_thinking == false %}
|
131 |
+
{{- " /think_off ASSISTANT:<longcat_think>
|
132 |
+
|
133 |
+
</longcat_think>
|
134 |
+
" }}
|
135 |
+
{%- else %}
|
136 |
+
{{- " ASSISTANT:" }}
|
137 |
+
{%- endif %}
|
138 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LongcatFlashForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attention_method": "MLA",
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_longcat_flash.LongcatFlashConfig",
|
10 |
+
"AutoModel": "modeling_longcat_flash.LongcatFlashModel",
|
11 |
+
"AutoModelForCausalLM": "modeling_longcat_flash.LongcatFlashForCausalLM"
|
12 |
+
},
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"expert_ffn_hidden_size": 64,
|
16 |
+
"ffn_hidden_size": 64,
|
17 |
+
"head_dim": 192,
|
18 |
+
"hidden_act": "silu",
|
19 |
+
"hidden_size": 8,
|
20 |
+
"initializer_range": 0.006,
|
21 |
+
"kv_lora_rank": 384,
|
22 |
+
"max_position_embeddings": 131072,
|
23 |
+
"mla_scale_kv_lora": true,
|
24 |
+
"mla_scale_q_lora": true,
|
25 |
+
"model_type": "longcat_flash",
|
26 |
+
"moe_topk": 12,
|
27 |
+
"n_routed_experts": 32,
|
28 |
+
"norm_topk_prob": false,
|
29 |
+
"num_attention_heads": 4,
|
30 |
+
"num_key_value_heads": 4,
|
31 |
+
"num_layers": 2,
|
32 |
+
"q_lora_rank": 32,
|
33 |
+
"qk_head_dim": 256,
|
34 |
+
"qk_nope_head_dim": 64,
|
35 |
+
"qk_rope_head_dim": 192,
|
36 |
+
"rms_norm_eps": 1e-05,
|
37 |
+
"rope_theta": 10000000.0,
|
38 |
+
"routed_scaling_factor": 6.0,
|
39 |
+
"router_bias": false,
|
40 |
+
"tie_word_embeddings": false,
|
41 |
+
"torch_dtype": "bfloat16",
|
42 |
+
"transformers_version": "4.56.0.dev0",
|
43 |
+
"use_cache": true,
|
44 |
+
"v_head_dim": 64,
|
45 |
+
"vocab_size": 131072,
|
46 |
+
"zero_expert_num": 16,
|
47 |
+
"zero_expert_type": "identity"
|
48 |
+
}
|
configuration_longcat_flash.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""LongcatFlash model configuration"""
|
3 |
+
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
6 |
+
|
7 |
+
|
8 |
+
LONGCAT_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
9 |
+
|
10 |
+
|
11 |
+
class LongcatFlashConfig(PretrainedConfig):
|
12 |
+
r"""
|
13 |
+
This is the configuration class to store the configuration of a [`LongcatFlashModel`]. It is used to instantiate an LongcatFlash
|
14 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
15 |
+
defaults will yield a similar configuration to that of the LongcatFlash.
|
16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
17 |
+
documentation from [`PretrainedConfig`] for more information.
|
18 |
+
|
19 |
+
|
20 |
+
Args:
|
21 |
+
vocab_size (`int`, *optional*, defaults to 131072):
|
22 |
+
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
23 |
+
`inputs_ids` passed when calling [`LongcatFlashModel`]
|
24 |
+
hidden_size (`int`, *optional*, defaults to 7168):
|
25 |
+
Dimension of the hidden representations.
|
26 |
+
ffn_hidden_size (`int`, *optional*, defaults to 18432):
|
27 |
+
Dimension of the MLP representations.
|
28 |
+
expert_ffn_hidden_size (`int`, *optional*, defaults to 2048):
|
29 |
+
Dimension of the MoE representations.
|
30 |
+
num_layers (`int`, *optional*, defaults to 61):
|
31 |
+
Number of hidden layers in the Transformer decoder.
|
32 |
+
num_attention_heads (`int`, *optional*, defaults to 128):
|
33 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
34 |
+
num_key_value_heads (`int`, *optional*, defaults to 128):
|
35 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
36 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
37 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
38 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
39 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
40 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
41 |
+
`num_attention_heads`.
|
42 |
+
n_routed_experts (`int`, *optional*, defaults to 256):
|
43 |
+
Number of routed experts.
|
44 |
+
routed_scaling_factor (`float`, *optional*, defaults to 2.5):
|
45 |
+
Scaling factor or routed experts.
|
46 |
+
kv_lora_rank (`int`, *optional*, defaults to 512):
|
47 |
+
Rank of the LoRA matrices for key and value projections.
|
48 |
+
q_lora_rank (`int`, *optional*, defaults to 1536):
|
49 |
+
Rank of the LoRA matrices for query projections.
|
50 |
+
qk_rope_head_dim (`int`, *optional*, defaults to 64):
|
51 |
+
Dimension of the query/key heads that use rotary position embeddings.
|
52 |
+
v_head_dim (`int`, *optional*, defaults to 128):
|
53 |
+
Dimension of the value heads.
|
54 |
+
qk_nope_head_dim (`int`, *optional*, defaults to 128):
|
55 |
+
Dimension of the query/key heads that don't use rotary position embeddings.
|
56 |
+
norm_topk_prob (`bool`, *optional*, defaults to `True`):
|
57 |
+
Whether to normalize the weights of the routed experts.
|
58 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
+
The non-linear activation function (function or string) in the decoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
61 |
+
The maximum sequence length that this model might ever be used with.
|
62 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
63 |
+
The epsilon used by the rms normalization layers.
|
64 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
pad_token_id (`int`, *optional*):
|
68 |
+
Padding token id.
|
69 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
70 |
+
Beginning of stream token id.
|
71 |
+
eos_token_id (`int`, *optional*, defaults to 1):
|
72 |
+
End of stream token id.
|
73 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to tie weight embeddings
|
75 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
76 |
+
The base period of the RoPE embeddings.
|
77 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
78 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
79 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
80 |
+
The dropout ratio for the attention probabilities.
|
81 |
+
attention_method (`str`, *optional*, defaults to `"MLA"`):
|
82 |
+
The attention method to use.
|
83 |
+
initializer_range (`float`, *optional*, defaults to 0.006):
|
84 |
+
The initializer range for the model.
|
85 |
+
router_bias (`bool`, *optional*, defaults to `False`):
|
86 |
+
Whether to use a bias in the router.
|
87 |
+
zero_expert_num (`int`, *optional*, defaults to `None`):
|
88 |
+
The number of zero experts to use.
|
89 |
+
zero_expert_type (`str`, *optional*, defaults to `None`):
|
90 |
+
The type of zero expert to use.
|
91 |
+
|
92 |
+
```python
|
93 |
+
>>> from transformers import LongcatFlashModel, LongcatFlashConfig
|
94 |
+
|
95 |
+
>>> # Initializing a LongcatFlash style configuration
|
96 |
+
>>> configuration = LongcatFlashConfig()
|
97 |
+
|
98 |
+
>>> # Accessing the model configuration
|
99 |
+
>>> configuration = model.config
|
100 |
+
```"""
|
101 |
+
|
102 |
+
model_type = "longcat_flash"
|
103 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
104 |
+
base_model_tp_plan = {
|
105 |
+
"layers.*.self_attn.k_proj": "colwise",
|
106 |
+
"layers.*.self_attn.v_proj": "colwise",
|
107 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
108 |
+
"layers.*.mlp.experts.*.gate_proj": "local_colwise",
|
109 |
+
"layers.*.mlp.experts.*.up_proj": "local_colwise",
|
110 |
+
"layers.*.mlp.experts.*.down_proj": "local_rowwise",
|
111 |
+
"layers.*.mlps.*.gate_proj": "local_colwise",
|
112 |
+
"layers.*.mlps.*.up_proj": "local_colwise",
|
113 |
+
"layers.*.mlps.*.down_proj": "local_rowwise",
|
114 |
+
}
|
115 |
+
base_model_pp_plan = {
|
116 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
117 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
118 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
119 |
+
}
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
vocab_size=131072,
|
124 |
+
hidden_size=7168,
|
125 |
+
ffn_hidden_size=18432,
|
126 |
+
expert_ffn_hidden_size=2048,
|
127 |
+
num_layers=61,
|
128 |
+
num_attention_heads=128,
|
129 |
+
num_key_value_heads=None,
|
130 |
+
n_routed_experts=256,
|
131 |
+
routed_scaling_factor=1,
|
132 |
+
kv_lora_rank=512,
|
133 |
+
q_lora_rank=1536,
|
134 |
+
qk_rope_head_dim=64,
|
135 |
+
v_head_dim=128,
|
136 |
+
qk_nope_head_dim=128,
|
137 |
+
mla_scale_q_lora=True,
|
138 |
+
mla_scale_kv_lora=True,
|
139 |
+
moe_topk=8,
|
140 |
+
norm_topk_prob=False,
|
141 |
+
hidden_act="silu",
|
142 |
+
max_position_embeddings=4096,
|
143 |
+
rms_norm_eps=1e-6,
|
144 |
+
use_cache=True,
|
145 |
+
pad_token_id=None,
|
146 |
+
bos_token_id=0,
|
147 |
+
eos_token_id=1,
|
148 |
+
tie_word_embeddings=False,
|
149 |
+
rope_theta=10000.0,
|
150 |
+
attention_bias=False,
|
151 |
+
attention_dropout=0.0,
|
152 |
+
attention_method='MLA',
|
153 |
+
initializer_range=0.006,
|
154 |
+
router_bias=False,
|
155 |
+
zero_expert_num=None,
|
156 |
+
zero_expert_type=None,
|
157 |
+
**kwargs,
|
158 |
+
):
|
159 |
+
self.vocab_size = vocab_size
|
160 |
+
self.max_position_embeddings = max_position_embeddings
|
161 |
+
self.hidden_size = hidden_size
|
162 |
+
self.ffn_hidden_size = ffn_hidden_size
|
163 |
+
self.expert_ffn_hidden_size = expert_ffn_hidden_size
|
164 |
+
self.num_layers = num_layers
|
165 |
+
self.num_attention_heads = num_attention_heads
|
166 |
+
self.n_routed_experts = n_routed_experts
|
167 |
+
self.routed_scaling_factor = routed_scaling_factor
|
168 |
+
self.kv_lora_rank = kv_lora_rank
|
169 |
+
self.q_lora_rank = q_lora_rank
|
170 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
171 |
+
self.v_head_dim = v_head_dim
|
172 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
173 |
+
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
174 |
+
self.moe_topk = moe_topk
|
175 |
+
self.norm_topk_prob = norm_topk_prob
|
176 |
+
self.mla_scale_q_lora = mla_scale_q_lora
|
177 |
+
self.mla_scale_kv_lora = mla_scale_kv_lora
|
178 |
+
self.attention_method = attention_method
|
179 |
+
self.initializer_range = initializer_range
|
180 |
+
self.router_bias = router_bias
|
181 |
+
self.zero_expert_num = zero_expert_num
|
182 |
+
self.zero_expert_type = zero_expert_type
|
183 |
+
|
184 |
+
if self.attention_method == "MLA":
|
185 |
+
self.head_dim = qk_rope_head_dim
|
186 |
+
else:
|
187 |
+
ValueError('attention_method should be one of ["MLA"]')
|
188 |
+
|
189 |
+
|
190 |
+
if num_key_value_heads is None:
|
191 |
+
num_key_value_heads = num_attention_heads
|
192 |
+
|
193 |
+
self.num_key_value_heads = num_key_value_heads
|
194 |
+
self.hidden_act = hidden_act
|
195 |
+
self.rms_norm_eps = rms_norm_eps
|
196 |
+
self.use_cache = use_cache
|
197 |
+
self.rope_theta = rope_theta
|
198 |
+
self.attention_bias = attention_bias
|
199 |
+
self.attention_dropout = attention_dropout
|
200 |
+
|
201 |
+
rope_config_validation(self)
|
202 |
+
|
203 |
+
super().__init__(
|
204 |
+
pad_token_id=pad_token_id,
|
205 |
+
bos_token_id=bos_token_id,
|
206 |
+
eos_token_id=eos_token_id,
|
207 |
+
tie_word_embeddings=tie_word_embeddings,
|
208 |
+
**kwargs,
|
209 |
+
)
|
210 |
+
|
211 |
+
@property
|
212 |
+
def num_hidden_layers(self):
|
213 |
+
return self.num_layers
|
214 |
+
|
215 |
+
|
216 |
+
__all__ = ["LongcatFlashConfig"]
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 3,
|
6 |
+
"transformers_version": "4.56.0.dev0"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1e9fd6ed1a3c9d1ed020a2849fdb150758373362ea6ae772ecc0fbd3f16286b
|
3 |
+
size 8904024
|
modeling_longcat_flash.py
ADDED
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2025 Meituan
|
3 |
+
# This code is licensed under the MIT License, for details, see the ./LICENSE file.
|
4 |
+
|
5 |
+
from typing import Callable, Optional, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
from transformers.activations import ACT2FN
|
12 |
+
from transformers.cache_utils import Cache, DynamicCache
|
13 |
+
from transformers.generation import GenerationMixin
|
14 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
15 |
+
from transformers.masking_utils import create_causal_mask
|
16 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
17 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
18 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
19 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
20 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
21 |
+
from transformers.processing_utils import Unpack
|
22 |
+
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
|
23 |
+
from transformers.utils.generic import check_model_inputs
|
24 |
+
from .configuration_longcat_flash import LongcatFlashConfig
|
25 |
+
|
26 |
+
|
27 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
28 |
+
class LongcatFlashRMSNorm(nn.Module):
|
29 |
+
def __init__(self, hidden_size, eps=1e-6):
|
30 |
+
"""
|
31 |
+
LongcatFlashRMSNorm is equivalent to T5LayerNorm
|
32 |
+
"""
|
33 |
+
super().__init__()
|
34 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
35 |
+
self.variance_epsilon = eps
|
36 |
+
|
37 |
+
def forward(self, hidden_states):
|
38 |
+
input_dtype = hidden_states.dtype
|
39 |
+
hidden_states = hidden_states.to(torch.float32)
|
40 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
41 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
42 |
+
return self.weight * hidden_states.to(input_dtype)
|
43 |
+
|
44 |
+
def extra_repr(self):
|
45 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
46 |
+
|
47 |
+
|
48 |
+
class LongcatFlashRotaryEmbedding(nn.Module):
|
49 |
+
def __init__(self, config: LongcatFlashConfig, device=None):
|
50 |
+
super().__init__()
|
51 |
+
# BC: "rope_type" was originally "type"
|
52 |
+
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
53 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
54 |
+
else:
|
55 |
+
self.rope_type = "default"
|
56 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
57 |
+
self.original_max_seq_len = config.max_position_embeddings
|
58 |
+
|
59 |
+
self.config = config
|
60 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
61 |
+
|
62 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
63 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
64 |
+
self.original_inv_freq = self.inv_freq
|
65 |
+
|
66 |
+
@torch.no_grad()
|
67 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
68 |
+
def forward(self, x, position_ids):
|
69 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
70 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
71 |
+
|
72 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
73 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
74 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
75 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
76 |
+
cos = emb.cos() * self.attention_scaling
|
77 |
+
sin = emb.sin() * self.attention_scaling
|
78 |
+
|
79 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
80 |
+
|
81 |
+
|
82 |
+
class LongcatFlashMLP(nn.Module):
|
83 |
+
def __init__(self, config, hidden_size=None, intermediate_size=None):
|
84 |
+
super().__init__()
|
85 |
+
self.config = config
|
86 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
87 |
+
self.intermediate_size = config.ffn_hidden_size if intermediate_size is None else intermediate_size
|
88 |
+
|
89 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
90 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
91 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
92 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
93 |
+
|
94 |
+
def forward(self, x):
|
95 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
96 |
+
return down_proj
|
97 |
+
|
98 |
+
|
99 |
+
class LongcatFlashTopkRouter(nn.Module):
|
100 |
+
def __init__(self, config):
|
101 |
+
super().__init__()
|
102 |
+
self.config = config
|
103 |
+
self.top_k = config.moe_topk
|
104 |
+
self.n_routed_experts = (
|
105 |
+
config.n_routed_experts
|
106 |
+
if config.zero_expert_num is None
|
107 |
+
else config.n_routed_experts + config.zero_expert_num
|
108 |
+
)
|
109 |
+
self.routed_scaling_factor = config.routed_scaling_factor
|
110 |
+
self.norm_topk_prob = config.norm_topk_prob
|
111 |
+
self.router_bias = config.router_bias
|
112 |
+
|
113 |
+
self.classifier = nn.Linear(config.hidden_size, self.n_routed_experts, bias=self.router_bias)
|
114 |
+
self.register_buffer("e_score_correction_bias", torch.zeros((self.n_routed_experts)))
|
115 |
+
|
116 |
+
@torch.no_grad()
|
117 |
+
def get_topk_indices(self, scores):
|
118 |
+
scores_for_choice = scores.view(-1, self.n_routed_experts) + self.e_score_correction_bias.unsqueeze(0)
|
119 |
+
topk_indices = torch.topk(scores_for_choice, k=self.top_k, dim=-1, sorted=False)[1]
|
120 |
+
return topk_indices
|
121 |
+
|
122 |
+
def forward(self, hidden_states):
|
123 |
+
hidden_states = hidden_states.view(-1, self.config.hidden_size)
|
124 |
+
router_logits = F.linear(hidden_states.type(torch.float32), self.classifier.weight.type(torch.float32))
|
125 |
+
scores = router_logits.softmax(dim=-1)
|
126 |
+
topk_indices = self.get_topk_indices(scores)
|
127 |
+
topk_weights = scores.gather(1, topk_indices)
|
128 |
+
if self.norm_topk_prob:
|
129 |
+
denominator = topk_weights.sum(dim=-1, keepdim=True) + 1e-20
|
130 |
+
topk_weights /= denominator
|
131 |
+
topk_weights = topk_weights * self.routed_scaling_factor
|
132 |
+
return topk_indices, topk_weights
|
133 |
+
|
134 |
+
|
135 |
+
class LongcatFlashMoE(nn.Module):
|
136 |
+
"""
|
137 |
+
moe module.
|
138 |
+
"""
|
139 |
+
|
140 |
+
def __init__(self, config):
|
141 |
+
super().__init__()
|
142 |
+
self.config = config
|
143 |
+
self.experts = nn.ModuleList(
|
144 |
+
[
|
145 |
+
LongcatFlashMLP(config, intermediate_size=config.expert_ffn_hidden_size)
|
146 |
+
for _ in range(config.n_routed_experts)
|
147 |
+
]
|
148 |
+
)
|
149 |
+
self.router = LongcatFlashTopkRouter(config)
|
150 |
+
self.zero_expert_num = config.zero_expert_num
|
151 |
+
self.zero_expert_type = config.zero_expert_type
|
152 |
+
|
153 |
+
def moe(self, hidden_states: torch.Tensor, topk_indices: torch.Tensor, topk_weights: torch.Tensor):
|
154 |
+
final_hidden_states = torch.zeros_like(hidden_states, dtype=topk_weights.dtype)
|
155 |
+
total_experts = len(self.experts) if self.zero_expert_num is None else len(self.experts) + self.zero_expert_num
|
156 |
+
|
157 |
+
expert_mask = torch.nn.functional.one_hot(topk_indices, num_classes=total_experts)
|
158 |
+
expert_mask = expert_mask.permute(2, 0, 1)
|
159 |
+
|
160 |
+
for expert_idx in range(total_experts):
|
161 |
+
expert = self.experts[expert_idx] if expert_idx < len(self.experts) else None
|
162 |
+
mask = expert_mask[expert_idx]
|
163 |
+
token_indices, weight_indices = torch.where(mask)
|
164 |
+
|
165 |
+
if token_indices.numel() > 0:
|
166 |
+
expert_weights = topk_weights[token_indices, weight_indices]
|
167 |
+
expert_input = hidden_states[token_indices]
|
168 |
+
|
169 |
+
if self.zero_expert_num is None or expert_idx < len(self.experts):
|
170 |
+
expert_output = expert(expert_input)
|
171 |
+
elif self.zero_expert_type == "identity":
|
172 |
+
expert_output = expert_input
|
173 |
+
else:
|
174 |
+
raise ValueError("Unknown condition")
|
175 |
+
|
176 |
+
weighted_output = expert_output * expert_weights.unsqueeze(-1)
|
177 |
+
final_hidden_states.index_add_(0, token_indices, weighted_output)
|
178 |
+
|
179 |
+
return final_hidden_states.type(hidden_states.dtype)
|
180 |
+
|
181 |
+
def forward(self, hidden_states):
|
182 |
+
orig_shape = hidden_states.shape
|
183 |
+
topk_indices, topk_weights = self.router(hidden_states)
|
184 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
185 |
+
hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape)
|
186 |
+
return hidden_states
|
187 |
+
|
188 |
+
|
189 |
+
def rotate_half(x):
|
190 |
+
"""Rotates half the hidden dims of the input."""
|
191 |
+
x1 = x[..., : x.shape[-1] // 2]
|
192 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
193 |
+
return torch.cat((-x2, x1), dim=-1)
|
194 |
+
|
195 |
+
|
196 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
197 |
+
"""
|
198 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
199 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
200 |
+
"""
|
201 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
202 |
+
if n_rep == 1:
|
203 |
+
return hidden_states
|
204 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
205 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
206 |
+
|
207 |
+
|
208 |
+
def eager_attention_forward(
|
209 |
+
module: nn.Module,
|
210 |
+
query: torch.Tensor,
|
211 |
+
key: torch.Tensor,
|
212 |
+
value: torch.Tensor,
|
213 |
+
attention_mask: Optional[torch.Tensor],
|
214 |
+
scaling: float,
|
215 |
+
dropout: float = 0.0,
|
216 |
+
**kwargs: Unpack[TransformersKwargs],
|
217 |
+
):
|
218 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
219 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
220 |
+
|
221 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
222 |
+
if attention_mask is not None:
|
223 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
224 |
+
attn_weights = attn_weights + causal_mask
|
225 |
+
|
226 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
227 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
228 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
229 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
230 |
+
|
231 |
+
return attn_output, attn_weights
|
232 |
+
|
233 |
+
|
234 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1, use_mla=False):
|
235 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
236 |
+
|
237 |
+
Args:
|
238 |
+
q (`torch.Tensor`): The query tensor.
|
239 |
+
k (`torch.Tensor`): The key tensor.
|
240 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
241 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
242 |
+
position_ids (`torch.Tensor`, *optional*):
|
243 |
+
Deprecated and unused.
|
244 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
245 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
246 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
247 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
248 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
249 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
250 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
251 |
+
Returns:
|
252 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
253 |
+
"""
|
254 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
255 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
256 |
+
|
257 |
+
if use_mla:
|
258 |
+
b, h, s, d = q.shape
|
259 |
+
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
260 |
+
|
261 |
+
b, h, s, d = k.shape
|
262 |
+
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
263 |
+
|
264 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
265 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
266 |
+
return q_embed, k_embed
|
267 |
+
|
268 |
+
|
269 |
+
class LongcatFlashMLA(nn.Module):
|
270 |
+
"""Modified from Deepseek MLA"""
|
271 |
+
|
272 |
+
def __init__(self, config: LongcatFlashConfig, layer_idx: int):
|
273 |
+
super().__init__()
|
274 |
+
self.config = config
|
275 |
+
self.layer_idx = layer_idx
|
276 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
277 |
+
self.attention_dropout = config.attention_dropout
|
278 |
+
self.num_heads = config.num_attention_heads
|
279 |
+
self.rope_theta = config.rope_theta
|
280 |
+
self.q_lora_rank = config.q_lora_rank
|
281 |
+
self.qk_rope_head_dim = config.qk_rope_head_dim
|
282 |
+
self.kv_lora_rank = config.kv_lora_rank
|
283 |
+
self.v_head_dim = config.v_head_dim
|
284 |
+
self.qk_nope_head_dim = config.qk_nope_head_dim
|
285 |
+
self.qk_head_dim = config.qk_head_dim
|
286 |
+
|
287 |
+
self.is_causal = True
|
288 |
+
if self.q_lora_rank is None:
|
289 |
+
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=False)
|
290 |
+
else:
|
291 |
+
self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias)
|
292 |
+
self.q_a_layernorm = LongcatFlashRMSNorm(config.q_lora_rank)
|
293 |
+
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)
|
294 |
+
|
295 |
+
self.kv_a_proj_with_mqa = nn.Linear(
|
296 |
+
config.hidden_size,
|
297 |
+
self.kv_lora_rank + self.qk_rope_head_dim,
|
298 |
+
bias=config.attention_bias,
|
299 |
+
)
|
300 |
+
self.kv_a_layernorm = LongcatFlashRMSNorm(self.kv_lora_rank)
|
301 |
+
self.kv_b_proj = nn.Linear(
|
302 |
+
self.kv_lora_rank,
|
303 |
+
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
304 |
+
bias=False,
|
305 |
+
)
|
306 |
+
|
307 |
+
self.o_proj = nn.Linear(
|
308 |
+
self.num_heads * self.v_head_dim,
|
309 |
+
config.hidden_size,
|
310 |
+
bias=config.attention_bias,
|
311 |
+
)
|
312 |
+
|
313 |
+
if config.mla_scale_q_lora:
|
314 |
+
self.mla_scale_q_lora = (config.hidden_size / self.q_lora_rank) ** 0.5
|
315 |
+
if config.mla_scale_kv_lora:
|
316 |
+
self.mla_scale_kv_lora = (config.hidden_size / self.kv_lora_rank) ** 0.5
|
317 |
+
self.scaling = self.qk_head_dim ** (-0.5)
|
318 |
+
|
319 |
+
def forward(
|
320 |
+
self,
|
321 |
+
hidden_states: torch.Tensor,
|
322 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
323 |
+
attention_mask: Optional[torch.Tensor],
|
324 |
+
past_key_value: Optional[Cache] = None,
|
325 |
+
cache_position: Optional[torch.LongTensor] = None,
|
326 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
327 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
328 |
+
batch_size, seq_length = hidden_states.shape[:-1]
|
329 |
+
query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
|
330 |
+
key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)
|
331 |
+
|
332 |
+
q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))).view(query_shape).transpose(1, 2)
|
333 |
+
q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
334 |
+
|
335 |
+
# apply q_lora scaling
|
336 |
+
if self.mla_scale_q_lora is not None:
|
337 |
+
q_pass = q_pass * self.mla_scale_q_lora
|
338 |
+
q_rot = q_rot * self.mla_scale_q_lora
|
339 |
+
|
340 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
341 |
+
k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
342 |
+
k_pass = self.kv_a_layernorm(k_pass)
|
343 |
+
|
344 |
+
# apply kv_lora scaling
|
345 |
+
if self.mla_scale_kv_lora is not None:
|
346 |
+
k_pass = k_pass * self.mla_scale_kv_lora
|
347 |
+
|
348 |
+
k_pass = self.kv_b_proj(k_pass).view(key_shape).transpose(1, 2)
|
349 |
+
k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
350 |
+
|
351 |
+
k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
|
352 |
+
|
353 |
+
cos, sin = position_embeddings
|
354 |
+
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, use_mla=True)
|
355 |
+
k_rot = k_rot.expand(*k_pass.shape[:-1], -1)
|
356 |
+
|
357 |
+
query_states = torch.cat((q_pass, q_rot), dim=-1)
|
358 |
+
key_states = torch.cat((k_pass, k_rot), dim=-1)
|
359 |
+
|
360 |
+
if past_key_value is not None:
|
361 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
362 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
363 |
+
|
364 |
+
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
|
365 |
+
value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])
|
366 |
+
|
367 |
+
attention_interface: Callable = eager_attention_forward
|
368 |
+
if self.config._attn_implementation != "eager":
|
369 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
370 |
+
|
371 |
+
attn_output, attn_weights = attention_interface(
|
372 |
+
self,
|
373 |
+
query_states,
|
374 |
+
key_states,
|
375 |
+
value_states,
|
376 |
+
attention_mask,
|
377 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
378 |
+
scaling=self.scaling,
|
379 |
+
**kwargs,
|
380 |
+
)
|
381 |
+
|
382 |
+
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
|
383 |
+
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
384 |
+
|
385 |
+
attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
|
386 |
+
attn_output = self.o_proj(attn_output)
|
387 |
+
return attn_output, attn_weights
|
388 |
+
|
389 |
+
|
390 |
+
def create_attention_block(class_name, *args, **kwargs):
|
391 |
+
attention_mapping = {"MLA": LongcatFlashMLA}
|
392 |
+
|
393 |
+
chosen_class = attention_mapping.get(class_name)
|
394 |
+
if not chosen_class:
|
395 |
+
raise ValueError(f"No class found for name: {class_name}")
|
396 |
+
|
397 |
+
return chosen_class(*args, **kwargs)
|
398 |
+
|
399 |
+
|
400 |
+
class LongcatFlashDecoderLayer(GradientCheckpointingLayer):
|
401 |
+
def __init__(self, config: LongcatFlashConfig, layer_idx: int):
|
402 |
+
super().__init__()
|
403 |
+
self.layer_idx = layer_idx
|
404 |
+
self.hidden_size = config.hidden_size
|
405 |
+
self.mlp = LongcatFlashMoE(config)
|
406 |
+
|
407 |
+
self_attn = []
|
408 |
+
mlps = []
|
409 |
+
input_layernorm = []
|
410 |
+
post_attention_layernorm = []
|
411 |
+
for i in range(2):
|
412 |
+
self_attn.append(
|
413 |
+
create_attention_block(config.attention_method, config=config, layer_idx=layer_idx * 2 + i)
|
414 |
+
)
|
415 |
+
mlps.append(LongcatFlashMLP(config))
|
416 |
+
input_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps))
|
417 |
+
post_attention_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps))
|
418 |
+
|
419 |
+
self.self_attn = nn.ModuleList(self_attn)
|
420 |
+
self.mlps = nn.ModuleList(mlps)
|
421 |
+
self.input_layernorm = nn.ModuleList(input_layernorm)
|
422 |
+
self.post_attention_layernorm = nn.ModuleList(post_attention_layernorm)
|
423 |
+
|
424 |
+
def forward(
|
425 |
+
self,
|
426 |
+
hidden_states: torch.Tensor,
|
427 |
+
attention_mask: Optional[torch.Tensor] = None,
|
428 |
+
position_ids: Optional[torch.LongTensor] = None,
|
429 |
+
past_key_value: Optional[Cache] = None,
|
430 |
+
use_cache: Optional[bool] = False,
|
431 |
+
cache_position: Optional[torch.LongTensor] = None,
|
432 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
433 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
434 |
+
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
435 |
+
for i in range(2):
|
436 |
+
residual = hidden_states
|
437 |
+
|
438 |
+
hidden_states = self.input_layernorm[i](hidden_states)
|
439 |
+
|
440 |
+
hidden_states, _ = self.self_attn[i](
|
441 |
+
hidden_states=hidden_states,
|
442 |
+
attention_mask=attention_mask,
|
443 |
+
position_ids=position_ids,
|
444 |
+
past_key_value=past_key_value,
|
445 |
+
use_cache=use_cache,
|
446 |
+
cache_position=cache_position,
|
447 |
+
position_embeddings=position_embeddings,
|
448 |
+
**kwargs,
|
449 |
+
)
|
450 |
+
hidden_states = residual + hidden_states
|
451 |
+
|
452 |
+
residual = hidden_states
|
453 |
+
hidden_states = self.post_attention_layernorm[i](hidden_states)
|
454 |
+
|
455 |
+
if i == 0:
|
456 |
+
shortcut_mlp_output = self.mlp(hidden_states) # shortcut output (MoE output)
|
457 |
+
|
458 |
+
hidden_states = self.mlps[i](hidden_states)
|
459 |
+
hidden_states = residual + hidden_states
|
460 |
+
if i == 1:
|
461 |
+
hidden_states = hidden_states + shortcut_mlp_output
|
462 |
+
|
463 |
+
return hidden_states
|
464 |
+
|
465 |
+
|
466 |
+
@auto_docstring
|
467 |
+
class LongcatFlashPreTrainedModel(PreTrainedModel):
|
468 |
+
config: LongcatFlashConfig
|
469 |
+
base_model_prefix = "model"
|
470 |
+
supports_gradient_checkpointing = True
|
471 |
+
_no_split_modules = ["LongcatFlashDecoderLayer"]
|
472 |
+
_skip_keys_device_placement = ["past_key_values"]
|
473 |
+
_supports_flash_attn = True
|
474 |
+
_supports_sdpa = True
|
475 |
+
_supports_flex_attn = True
|
476 |
+
_can_compile_fullgraph = True
|
477 |
+
_supports_attention_backend = True
|
478 |
+
_can_record_outputs = {
|
479 |
+
"hidden_states": LongcatFlashDecoderLayer,
|
480 |
+
"attentions": LongcatFlashMLA,
|
481 |
+
}
|
482 |
+
|
483 |
+
|
484 |
+
@auto_docstring
|
485 |
+
class LongcatFlashModel(LongcatFlashPreTrainedModel):
|
486 |
+
_keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"]
|
487 |
+
|
488 |
+
def __init__(self, config: LongcatFlashConfig):
|
489 |
+
super().__init__(config)
|
490 |
+
self.padding_idx = config.pad_token_id
|
491 |
+
self.vocab_size = config.vocab_size
|
492 |
+
|
493 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
494 |
+
self.layers = nn.ModuleList(
|
495 |
+
[LongcatFlashDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
496 |
+
)
|
497 |
+
self.norm = LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
498 |
+
self.rotary_emb = LongcatFlashRotaryEmbedding(config=config)
|
499 |
+
self.gradient_checkpointing = False
|
500 |
+
|
501 |
+
# Initialize weights and apply final processing
|
502 |
+
self.post_init()
|
503 |
+
|
504 |
+
@check_model_inputs
|
505 |
+
@auto_docstring
|
506 |
+
def forward(
|
507 |
+
self,
|
508 |
+
input_ids: Optional[torch.LongTensor] = None,
|
509 |
+
attention_mask: Optional[torch.Tensor] = None,
|
510 |
+
position_ids: Optional[torch.LongTensor] = None,
|
511 |
+
past_key_values: Optional[Cache] = None,
|
512 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
513 |
+
cache_position: Optional[torch.LongTensor] = None,
|
514 |
+
use_cache: Optional[bool] = None,
|
515 |
+
**kwargs: Unpack[TransformersKwargs],
|
516 |
+
) -> BaseModelOutputWithPast:
|
517 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
518 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
519 |
+
|
520 |
+
if inputs_embeds is None:
|
521 |
+
inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)
|
522 |
+
|
523 |
+
if use_cache and past_key_values is None:
|
524 |
+
past_key_values = DynamicCache()
|
525 |
+
|
526 |
+
if cache_position is None:
|
527 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
528 |
+
cache_position: torch.Tensor = torch.arange(
|
529 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
530 |
+
)
|
531 |
+
|
532 |
+
if position_ids is None:
|
533 |
+
position_ids = cache_position.unsqueeze(0)
|
534 |
+
|
535 |
+
causal_mask = create_causal_mask(
|
536 |
+
config=self.config,
|
537 |
+
input_embeds=inputs_embeds,
|
538 |
+
attention_mask=attention_mask,
|
539 |
+
cache_position=cache_position,
|
540 |
+
past_key_values=past_key_values,
|
541 |
+
position_ids=position_ids,
|
542 |
+
)
|
543 |
+
|
544 |
+
hidden_states = inputs_embeds
|
545 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
546 |
+
|
547 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
548 |
+
hidden_states = decoder_layer(
|
549 |
+
hidden_states,
|
550 |
+
attention_mask=causal_mask,
|
551 |
+
position_ids=position_ids,
|
552 |
+
past_key_value=past_key_values,
|
553 |
+
cache_position=cache_position,
|
554 |
+
position_embeddings=position_embeddings,
|
555 |
+
**kwargs,
|
556 |
+
)
|
557 |
+
|
558 |
+
hidden_states = self.norm(hidden_states)
|
559 |
+
return BaseModelOutputWithPast(
|
560 |
+
last_hidden_state=hidden_states,
|
561 |
+
past_key_values=past_key_values,
|
562 |
+
)
|
563 |
+
|
564 |
+
|
565 |
+
@auto_docstring
|
566 |
+
class LongcatFlashForCausalLM(LongcatFlashPreTrainedModel, GenerationMixin):
|
567 |
+
_tied_weights_keys = ["lm_head.weight"]
|
568 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
569 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
570 |
+
_keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"]
|
571 |
+
|
572 |
+
def __init__(self, config):
|
573 |
+
super().__init__(config)
|
574 |
+
self.model = LongcatFlashModel(config)
|
575 |
+
self.vocab_size = config.vocab_size
|
576 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
577 |
+
|
578 |
+
# Initialize weights and apply final processing
|
579 |
+
self.post_init()
|
580 |
+
|
581 |
+
def set_decoder(self, decoder):
|
582 |
+
self.model = decoder
|
583 |
+
|
584 |
+
def get_decoder(self):
|
585 |
+
return self.model
|
586 |
+
|
587 |
+
@can_return_tuple
|
588 |
+
@auto_docstring
|
589 |
+
def forward(
|
590 |
+
self,
|
591 |
+
input_ids: Optional[torch.LongTensor] = None,
|
592 |
+
attention_mask: Optional[torch.Tensor] = None,
|
593 |
+
position_ids: Optional[torch.LongTensor] = None,
|
594 |
+
past_key_values: Optional[Cache] = None,
|
595 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
596 |
+
labels: Optional[torch.LongTensor] = None,
|
597 |
+
use_cache: Optional[bool] = None,
|
598 |
+
cache_position: Optional[torch.LongTensor] = None,
|
599 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
600 |
+
**kwargs: Unpack[TransformersKwargs],
|
601 |
+
) -> CausalLMOutputWithPast:
|
602 |
+
r"""
|
603 |
+
Example:
|
604 |
+
|
605 |
+
```python
|
606 |
+
>>> from transformers import AutoTokenizer, LongcatFlashForCausalLM
|
607 |
+
|
608 |
+
>>> model = LongcatFlashForCausalLM.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf")
|
609 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf")
|
610 |
+
|
611 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
612 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
613 |
+
|
614 |
+
>>> # Generate
|
615 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
616 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
617 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
618 |
+
```"""
|
619 |
+
outputs: BaseModelOutputWithPast = self.model(
|
620 |
+
input_ids=input_ids,
|
621 |
+
attention_mask=attention_mask,
|
622 |
+
position_ids=position_ids,
|
623 |
+
past_key_values=past_key_values,
|
624 |
+
inputs_embeds=inputs_embeds,
|
625 |
+
use_cache=use_cache,
|
626 |
+
cache_position=cache_position,
|
627 |
+
**kwargs,
|
628 |
+
)
|
629 |
+
|
630 |
+
hidden_states = outputs.last_hidden_state
|
631 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
632 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
633 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
634 |
+
|
635 |
+
loss = None
|
636 |
+
if labels is not None:
|
637 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
638 |
+
|
639 |
+
return CausalLMOutputWithPast(
|
640 |
+
loss=loss,
|
641 |
+
logits=logits,
|
642 |
+
past_key_values=outputs.past_key_values,
|
643 |
+
hidden_states=outputs.hidden_states,
|
644 |
+
attentions=outputs.attentions,
|
645 |
+
)
|
646 |
+
|
647 |
+
|
648 |
+
__all__ = ["LongcatFlashPreTrainedModel", "LongcatFlashModel", "LongcatFlashForCausalLM"]
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<longcat_s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</longcat_s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<longcat_pad>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<longcat_unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,1810 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": true,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<longcat_unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<longcat_s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</longcat_s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"3": {
|
31 |
+
"content": "<longcat_pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"4": {
|
39 |
+
"content": "<shift_unk>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"5": {
|
47 |
+
"content": "<shift_s>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"6": {
|
55 |
+
"content": "</shift_s>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"7": {
|
63 |
+
"content": "<shift_pad>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"8": {
|
71 |
+
"content": "<mask_0>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"9": {
|
79 |
+
"content": "<reponame>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"10": {
|
87 |
+
"content": "<filename>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"11": {
|
95 |
+
"content": "<gh_stars>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"12": {
|
103 |
+
"content": "<issue_start>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"13": {
|
111 |
+
"content": "<issue_comment>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
},
|
118 |
+
"14": {
|
119 |
+
"content": "<issue_closed>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": true
|
125 |
+
},
|
126 |
+
"15": {
|
127 |
+
"content": "<jupyter_start>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": false,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": true
|
133 |
+
},
|
134 |
+
"16": {
|
135 |
+
"content": "<jupyter_text>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": false,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": true
|
141 |
+
},
|
142 |
+
"17": {
|
143 |
+
"content": "<jupyter_code>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": false,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": true
|
149 |
+
},
|
150 |
+
"18": {
|
151 |
+
"content": "<jupyter_output>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": true
|
157 |
+
},
|
158 |
+
"19": {
|
159 |
+
"content": "<empty_output>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": false,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": true
|
165 |
+
},
|
166 |
+
"20": {
|
167 |
+
"content": "<commit_before>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": false,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": true
|
173 |
+
},
|
174 |
+
"21": {
|
175 |
+
"content": "<commit_msg>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": false,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": true
|
181 |
+
},
|
182 |
+
"22": {
|
183 |
+
"content": "<commit_after>",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": false,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": true
|
189 |
+
},
|
190 |
+
"23": {
|
191 |
+
"content": "<program_lang>",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": false,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": true
|
197 |
+
},
|
198 |
+
"24": {
|
199 |
+
"content": "<|image_placeholder|>",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": false,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": true
|
205 |
+
},
|
206 |
+
"25": {
|
207 |
+
"content": "<|url_placeholder|>",
|
208 |
+
"lstrip": false,
|
209 |
+
"normalized": false,
|
210 |
+
"rstrip": false,
|
211 |
+
"single_word": false,
|
212 |
+
"special": true
|
213 |
+
},
|
214 |
+
"26": {
|
215 |
+
"content": "<|hyperlink_placeholder|>",
|
216 |
+
"lstrip": false,
|
217 |
+
"normalized": false,
|
218 |
+
"rstrip": false,
|
219 |
+
"single_word": false,
|
220 |
+
"special": true
|
221 |
+
},
|
222 |
+
"27": {
|
223 |
+
"content": "<|table_placeholder|>",
|
224 |
+
"lstrip": false,
|
225 |
+
"normalized": false,
|
226 |
+
"rstrip": false,
|
227 |
+
"single_word": false,
|
228 |
+
"special": true
|
229 |
+
},
|
230 |
+
"28": {
|
231 |
+
"content": "<|equation_placeholder|>",
|
232 |
+
"lstrip": false,
|
233 |
+
"normalized": false,
|
234 |
+
"rstrip": false,
|
235 |
+
"single_word": false,
|
236 |
+
"special": true
|
237 |
+
},
|
238 |
+
"29": {
|
239 |
+
"content": "<|code_placeholder|>",
|
240 |
+
"lstrip": false,
|
241 |
+
"normalized": false,
|
242 |
+
"rstrip": false,
|
243 |
+
"single_word": false,
|
244 |
+
"special": true
|
245 |
+
},
|
246 |
+
"30": {
|
247 |
+
"content": "<|reference_placeholder|>",
|
248 |
+
"lstrip": false,
|
249 |
+
"normalized": false,
|
250 |
+
"rstrip": false,
|
251 |
+
"single_word": false,
|
252 |
+
"special": true
|
253 |
+
},
|
254 |
+
"31": {
|
255 |
+
"content": "<|endoftext|>",
|
256 |
+
"lstrip": false,
|
257 |
+
"normalized": false,
|
258 |
+
"rstrip": false,
|
259 |
+
"single_word": false,
|
260 |
+
"special": true
|
261 |
+
},
|
262 |
+
"32": {
|
263 |
+
"content": "<fim_prefix>",
|
264 |
+
"lstrip": false,
|
265 |
+
"normalized": false,
|
266 |
+
"rstrip": false,
|
267 |
+
"single_word": false,
|
268 |
+
"special": true
|
269 |
+
},
|
270 |
+
"33": {
|
271 |
+
"content": "<fim_middle>",
|
272 |
+
"lstrip": false,
|
273 |
+
"normalized": false,
|
274 |
+
"rstrip": false,
|
275 |
+
"single_word": false,
|
276 |
+
"special": true
|
277 |
+
},
|
278 |
+
"34": {
|
279 |
+
"content": "<fim_suffix>",
|
280 |
+
"lstrip": false,
|
281 |
+
"normalized": false,
|
282 |
+
"rstrip": false,
|
283 |
+
"single_word": false,
|
284 |
+
"special": true
|
285 |
+
},
|
286 |
+
"35": {
|
287 |
+
"content": "<fim_pad>",
|
288 |
+
"lstrip": false,
|
289 |
+
"normalized": false,
|
290 |
+
"rstrip": false,
|
291 |
+
"single_word": false,
|
292 |
+
"special": true
|
293 |
+
},
|
294 |
+
"36": {
|
295 |
+
"content": "<longcat_think>",
|
296 |
+
"lstrip": false,
|
297 |
+
"normalized": false,
|
298 |
+
"rstrip": false,
|
299 |
+
"single_word": false,
|
300 |
+
"special": false
|
301 |
+
},
|
302 |
+
"37": {
|
303 |
+
"content": "</longcat_think>",
|
304 |
+
"lstrip": false,
|
305 |
+
"normalized": false,
|
306 |
+
"rstrip": false,
|
307 |
+
"single_word": false,
|
308 |
+
"special": false
|
309 |
+
},
|
310 |
+
"38": {
|
311 |
+
"content": "<longcat_answer>",
|
312 |
+
"lstrip": false,
|
313 |
+
"normalized": false,
|
314 |
+
"rstrip": false,
|
315 |
+
"single_word": false,
|
316 |
+
"special": false
|
317 |
+
},
|
318 |
+
"39": {
|
319 |
+
"content": "</longcat_answer>",
|
320 |
+
"lstrip": false,
|
321 |
+
"normalized": false,
|
322 |
+
"rstrip": false,
|
323 |
+
"single_word": false,
|
324 |
+
"special": false
|
325 |
+
},
|
326 |
+
"40": {
|
327 |
+
"content": "<longcat_files>",
|
328 |
+
"lstrip": false,
|
329 |
+
"normalized": false,
|
330 |
+
"rstrip": false,
|
331 |
+
"single_word": false,
|
332 |
+
"special": false
|
333 |
+
},
|
334 |
+
"41": {
|
335 |
+
"content": "</longcat_files>",
|
336 |
+
"lstrip": false,
|
337 |
+
"normalized": false,
|
338 |
+
"rstrip": false,
|
339 |
+
"single_word": false,
|
340 |
+
"special": false
|
341 |
+
},
|
342 |
+
"42": {
|
343 |
+
"content": "<longcat_tool_call>",
|
344 |
+
"lstrip": false,
|
345 |
+
"normalized": false,
|
346 |
+
"rstrip": false,
|
347 |
+
"single_word": false,
|
348 |
+
"special": false
|
349 |
+
},
|
350 |
+
"43": {
|
351 |
+
"content": "</longcat_tool_call>",
|
352 |
+
"lstrip": false,
|
353 |
+
"normalized": false,
|
354 |
+
"rstrip": false,
|
355 |
+
"single_word": false,
|
356 |
+
"special": false
|
357 |
+
},
|
358 |
+
"44": {
|
359 |
+
"content": "<mask_20>",
|
360 |
+
"lstrip": false,
|
361 |
+
"normalized": false,
|
362 |
+
"rstrip": false,
|
363 |
+
"single_word": false,
|
364 |
+
"special": true
|
365 |
+
},
|
366 |
+
"45": {
|
367 |
+
"content": "<mask_21>",
|
368 |
+
"lstrip": false,
|
369 |
+
"normalized": false,
|
370 |
+
"rstrip": false,
|
371 |
+
"single_word": false,
|
372 |
+
"special": true
|
373 |
+
},
|
374 |
+
"46": {
|
375 |
+
"content": "<mask_22>",
|
376 |
+
"lstrip": false,
|
377 |
+
"normalized": false,
|
378 |
+
"rstrip": false,
|
379 |
+
"single_word": false,
|
380 |
+
"special": true
|
381 |
+
},
|
382 |
+
"47": {
|
383 |
+
"content": "<mask_23>",
|
384 |
+
"lstrip": false,
|
385 |
+
"normalized": false,
|
386 |
+
"rstrip": false,
|
387 |
+
"single_word": false,
|
388 |
+
"special": true
|
389 |
+
},
|
390 |
+
"48": {
|
391 |
+
"content": "<mask_24>",
|
392 |
+
"lstrip": false,
|
393 |
+
"normalized": false,
|
394 |
+
"rstrip": false,
|
395 |
+
"single_word": false,
|
396 |
+
"special": true
|
397 |
+
},
|
398 |
+
"49": {
|
399 |
+
"content": "<mask_25>",
|
400 |
+
"lstrip": false,
|
401 |
+
"normalized": false,
|
402 |
+
"rstrip": false,
|
403 |
+
"single_word": false,
|
404 |
+
"special": true
|
405 |
+
},
|
406 |
+
"50": {
|
407 |
+
"content": "<mask_26>",
|
408 |
+
"lstrip": false,
|
409 |
+
"normalized": false,
|
410 |
+
"rstrip": false,
|
411 |
+
"single_word": false,
|
412 |
+
"special": true
|
413 |
+
},
|
414 |
+
"51": {
|
415 |
+
"content": "<mask_27>",
|
416 |
+
"lstrip": false,
|
417 |
+
"normalized": false,
|
418 |
+
"rstrip": false,
|
419 |
+
"single_word": false,
|
420 |
+
"special": true
|
421 |
+
},
|
422 |
+
"52": {
|
423 |
+
"content": "<mask_28>",
|
424 |
+
"lstrip": false,
|
425 |
+
"normalized": false,
|
426 |
+
"rstrip": false,
|
427 |
+
"single_word": false,
|
428 |
+
"special": true
|
429 |
+
},
|
430 |
+
"53": {
|
431 |
+
"content": "<mask_29>",
|
432 |
+
"lstrip": false,
|
433 |
+
"normalized": false,
|
434 |
+
"rstrip": false,
|
435 |
+
"single_word": false,
|
436 |
+
"special": true
|
437 |
+
},
|
438 |
+
"54": {
|
439 |
+
"content": "<mask_30>",
|
440 |
+
"lstrip": false,
|
441 |
+
"normalized": false,
|
442 |
+
"rstrip": false,
|
443 |
+
"single_word": false,
|
444 |
+
"special": true
|
445 |
+
},
|
446 |
+
"55": {
|
447 |
+
"content": "<mask_31>",
|
448 |
+
"lstrip": false,
|
449 |
+
"normalized": false,
|
450 |
+
"rstrip": false,
|
451 |
+
"single_word": false,
|
452 |
+
"special": true
|
453 |
+
},
|
454 |
+
"56": {
|
455 |
+
"content": "<mask_32>",
|
456 |
+
"lstrip": false,
|
457 |
+
"normalized": false,
|
458 |
+
"rstrip": false,
|
459 |
+
"single_word": false,
|
460 |
+
"special": true
|
461 |
+
},
|
462 |
+
"57": {
|
463 |
+
"content": "<mask_33>",
|
464 |
+
"lstrip": false,
|
465 |
+
"normalized": false,
|
466 |
+
"rstrip": false,
|
467 |
+
"single_word": false,
|
468 |
+
"special": true
|
469 |
+
},
|
470 |
+
"58": {
|
471 |
+
"content": "<mask_34>",
|
472 |
+
"lstrip": false,
|
473 |
+
"normalized": false,
|
474 |
+
"rstrip": false,
|
475 |
+
"single_word": false,
|
476 |
+
"special": true
|
477 |
+
},
|
478 |
+
"59": {
|
479 |
+
"content": "<mask_35>",
|
480 |
+
"lstrip": false,
|
481 |
+
"normalized": false,
|
482 |
+
"rstrip": false,
|
483 |
+
"single_word": false,
|
484 |
+
"special": true
|
485 |
+
},
|
486 |
+
"60": {
|
487 |
+
"content": "<mask_36>",
|
488 |
+
"lstrip": false,
|
489 |
+
"normalized": false,
|
490 |
+
"rstrip": false,
|
491 |
+
"single_word": false,
|
492 |
+
"special": true
|
493 |
+
},
|
494 |
+
"61": {
|
495 |
+
"content": "<mask_37>",
|
496 |
+
"lstrip": false,
|
497 |
+
"normalized": false,
|
498 |
+
"rstrip": false,
|
499 |
+
"single_word": false,
|
500 |
+
"special": true
|
501 |
+
},
|
502 |
+
"62": {
|
503 |
+
"content": "<mask_38>",
|
504 |
+
"lstrip": false,
|
505 |
+
"normalized": false,
|
506 |
+
"rstrip": false,
|
507 |
+
"single_word": false,
|
508 |
+
"special": true
|
509 |
+
},
|
510 |
+
"63": {
|
511 |
+
"content": "<mask_39>",
|
512 |
+
"lstrip": false,
|
513 |
+
"normalized": false,
|
514 |
+
"rstrip": false,
|
515 |
+
"single_word": false,
|
516 |
+
"special": true
|
517 |
+
},
|
518 |
+
"64": {
|
519 |
+
"content": "<mask_40>",
|
520 |
+
"lstrip": false,
|
521 |
+
"normalized": false,
|
522 |
+
"rstrip": false,
|
523 |
+
"single_word": false,
|
524 |
+
"special": true
|
525 |
+
},
|
526 |
+
"65": {
|
527 |
+
"content": "<mask_41>",
|
528 |
+
"lstrip": false,
|
529 |
+
"normalized": false,
|
530 |
+
"rstrip": false,
|
531 |
+
"single_word": false,
|
532 |
+
"special": true
|
533 |
+
},
|
534 |
+
"66": {
|
535 |
+
"content": "<mask_42>",
|
536 |
+
"lstrip": false,
|
537 |
+
"normalized": false,
|
538 |
+
"rstrip": false,
|
539 |
+
"single_word": false,
|
540 |
+
"special": true
|
541 |
+
},
|
542 |
+
"67": {
|
543 |
+
"content": "<mask_43>",
|
544 |
+
"lstrip": false,
|
545 |
+
"normalized": false,
|
546 |
+
"rstrip": false,
|
547 |
+
"single_word": false,
|
548 |
+
"special": true
|
549 |
+
},
|
550 |
+
"68": {
|
551 |
+
"content": "<mask_44>",
|
552 |
+
"lstrip": false,
|
553 |
+
"normalized": false,
|
554 |
+
"rstrip": false,
|
555 |
+
"single_word": false,
|
556 |
+
"special": true
|
557 |
+
},
|
558 |
+
"69": {
|
559 |
+
"content": "<mask_45>",
|
560 |
+
"lstrip": false,
|
561 |
+
"normalized": false,
|
562 |
+
"rstrip": false,
|
563 |
+
"single_word": false,
|
564 |
+
"special": true
|
565 |
+
},
|
566 |
+
"70": {
|
567 |
+
"content": "<mask_46>",
|
568 |
+
"lstrip": false,
|
569 |
+
"normalized": false,
|
570 |
+
"rstrip": false,
|
571 |
+
"single_word": false,
|
572 |
+
"special": true
|
573 |
+
},
|
574 |
+
"71": {
|
575 |
+
"content": "<mask_47>",
|
576 |
+
"lstrip": false,
|
577 |
+
"normalized": false,
|
578 |
+
"rstrip": false,
|
579 |
+
"single_word": false,
|
580 |
+
"special": true
|
581 |
+
},
|
582 |
+
"72": {
|
583 |
+
"content": "<mask_48>",
|
584 |
+
"lstrip": false,
|
585 |
+
"normalized": false,
|
586 |
+
"rstrip": false,
|
587 |
+
"single_word": false,
|
588 |
+
"special": true
|
589 |
+
},
|
590 |
+
"73": {
|
591 |
+
"content": "<mask_49>",
|
592 |
+
"lstrip": false,
|
593 |
+
"normalized": false,
|
594 |
+
"rstrip": false,
|
595 |
+
"single_word": false,
|
596 |
+
"special": true
|
597 |
+
},
|
598 |
+
"74": {
|
599 |
+
"content": "<mask_50>",
|
600 |
+
"lstrip": false,
|
601 |
+
"normalized": false,
|
602 |
+
"rstrip": false,
|
603 |
+
"single_word": false,
|
604 |
+
"special": true
|
605 |
+
},
|
606 |
+
"75": {
|
607 |
+
"content": "<mask_51>",
|
608 |
+
"lstrip": false,
|
609 |
+
"normalized": false,
|
610 |
+
"rstrip": false,
|
611 |
+
"single_word": false,
|
612 |
+
"special": true
|
613 |
+
},
|
614 |
+
"76": {
|
615 |
+
"content": "<mask_52>",
|
616 |
+
"lstrip": false,
|
617 |
+
"normalized": false,
|
618 |
+
"rstrip": false,
|
619 |
+
"single_word": false,
|
620 |
+
"special": true
|
621 |
+
},
|
622 |
+
"77": {
|
623 |
+
"content": "<mask_53>",
|
624 |
+
"lstrip": false,
|
625 |
+
"normalized": false,
|
626 |
+
"rstrip": false,
|
627 |
+
"single_word": false,
|
628 |
+
"special": true
|
629 |
+
},
|
630 |
+
"78": {
|
631 |
+
"content": "<mask_54>",
|
632 |
+
"lstrip": false,
|
633 |
+
"normalized": false,
|
634 |
+
"rstrip": false,
|
635 |
+
"single_word": false,
|
636 |
+
"special": true
|
637 |
+
},
|
638 |
+
"79": {
|
639 |
+
"content": "<mask_55>",
|
640 |
+
"lstrip": false,
|
641 |
+
"normalized": false,
|
642 |
+
"rstrip": false,
|
643 |
+
"single_word": false,
|
644 |
+
"special": true
|
645 |
+
},
|
646 |
+
"80": {
|
647 |
+
"content": "<mask_56>",
|
648 |
+
"lstrip": false,
|
649 |
+
"normalized": false,
|
650 |
+
"rstrip": false,
|
651 |
+
"single_word": false,
|
652 |
+
"special": true
|
653 |
+
},
|
654 |
+
"81": {
|
655 |
+
"content": "<mask_57>",
|
656 |
+
"lstrip": false,
|
657 |
+
"normalized": false,
|
658 |
+
"rstrip": false,
|
659 |
+
"single_word": false,
|
660 |
+
"special": true
|
661 |
+
},
|
662 |
+
"82": {
|
663 |
+
"content": "<mask_58>",
|
664 |
+
"lstrip": false,
|
665 |
+
"normalized": false,
|
666 |
+
"rstrip": false,
|
667 |
+
"single_word": false,
|
668 |
+
"special": true
|
669 |
+
},
|
670 |
+
"83": {
|
671 |
+
"content": "<mask_59>",
|
672 |
+
"lstrip": false,
|
673 |
+
"normalized": false,
|
674 |
+
"rstrip": false,
|
675 |
+
"single_word": false,
|
676 |
+
"special": true
|
677 |
+
},
|
678 |
+
"84": {
|
679 |
+
"content": "<mask_60>",
|
680 |
+
"lstrip": false,
|
681 |
+
"normalized": false,
|
682 |
+
"rstrip": false,
|
683 |
+
"single_word": false,
|
684 |
+
"special": true
|
685 |
+
},
|
686 |
+
"85": {
|
687 |
+
"content": "<mask_61>",
|
688 |
+
"lstrip": false,
|
689 |
+
"normalized": false,
|
690 |
+
"rstrip": false,
|
691 |
+
"single_word": false,
|
692 |
+
"special": true
|
693 |
+
},
|
694 |
+
"86": {
|
695 |
+
"content": "<mask_62>",
|
696 |
+
"lstrip": false,
|
697 |
+
"normalized": false,
|
698 |
+
"rstrip": false,
|
699 |
+
"single_word": false,
|
700 |
+
"special": true
|
701 |
+
},
|
702 |
+
"87": {
|
703 |
+
"content": "<mask_63>",
|
704 |
+
"lstrip": false,
|
705 |
+
"normalized": false,
|
706 |
+
"rstrip": false,
|
707 |
+
"single_word": false,
|
708 |
+
"special": true
|
709 |
+
},
|
710 |
+
"88": {
|
711 |
+
"content": "<mask_64>",
|
712 |
+
"lstrip": false,
|
713 |
+
"normalized": false,
|
714 |
+
"rstrip": false,
|
715 |
+
"single_word": false,
|
716 |
+
"special": true
|
717 |
+
},
|
718 |
+
"89": {
|
719 |
+
"content": "<mask_65>",
|
720 |
+
"lstrip": false,
|
721 |
+
"normalized": false,
|
722 |
+
"rstrip": false,
|
723 |
+
"single_word": false,
|
724 |
+
"special": true
|
725 |
+
},
|
726 |
+
"90": {
|
727 |
+
"content": "<mask_66>",
|
728 |
+
"lstrip": false,
|
729 |
+
"normalized": false,
|
730 |
+
"rstrip": false,
|
731 |
+
"single_word": false,
|
732 |
+
"special": true
|
733 |
+
},
|
734 |
+
"91": {
|
735 |
+
"content": "<mask_67>",
|
736 |
+
"lstrip": false,
|
737 |
+
"normalized": false,
|
738 |
+
"rstrip": false,
|
739 |
+
"single_word": false,
|
740 |
+
"special": true
|
741 |
+
},
|
742 |
+
"92": {
|
743 |
+
"content": "<mask_68>",
|
744 |
+
"lstrip": false,
|
745 |
+
"normalized": false,
|
746 |
+
"rstrip": false,
|
747 |
+
"single_word": false,
|
748 |
+
"special": true
|
749 |
+
},
|
750 |
+
"93": {
|
751 |
+
"content": "<mask_69>",
|
752 |
+
"lstrip": false,
|
753 |
+
"normalized": false,
|
754 |
+
"rstrip": false,
|
755 |
+
"single_word": false,
|
756 |
+
"special": true
|
757 |
+
},
|
758 |
+
"94": {
|
759 |
+
"content": "<mask_70>",
|
760 |
+
"lstrip": false,
|
761 |
+
"normalized": false,
|
762 |
+
"rstrip": false,
|
763 |
+
"single_word": false,
|
764 |
+
"special": true
|
765 |
+
},
|
766 |
+
"95": {
|
767 |
+
"content": "<mask_71>",
|
768 |
+
"lstrip": false,
|
769 |
+
"normalized": false,
|
770 |
+
"rstrip": false,
|
771 |
+
"single_word": false,
|
772 |
+
"special": true
|
773 |
+
},
|
774 |
+
"96": {
|
775 |
+
"content": "<mask_72>",
|
776 |
+
"lstrip": false,
|
777 |
+
"normalized": false,
|
778 |
+
"rstrip": false,
|
779 |
+
"single_word": false,
|
780 |
+
"special": true
|
781 |
+
},
|
782 |
+
"97": {
|
783 |
+
"content": "<mask_73>",
|
784 |
+
"lstrip": false,
|
785 |
+
"normalized": false,
|
786 |
+
"rstrip": false,
|
787 |
+
"single_word": false,
|
788 |
+
"special": true
|
789 |
+
},
|
790 |
+
"98": {
|
791 |
+
"content": "<mask_74>",
|
792 |
+
"lstrip": false,
|
793 |
+
"normalized": false,
|
794 |
+
"rstrip": false,
|
795 |
+
"single_word": false,
|
796 |
+
"special": true
|
797 |
+
},
|
798 |
+
"99": {
|
799 |
+
"content": "<mask_75>",
|
800 |
+
"lstrip": false,
|
801 |
+
"normalized": false,
|
802 |
+
"rstrip": false,
|
803 |
+
"single_word": false,
|
804 |
+
"special": true
|
805 |
+
},
|
806 |
+
"100": {
|
807 |
+
"content": "<mask_76>",
|
808 |
+
"lstrip": false,
|
809 |
+
"normalized": false,
|
810 |
+
"rstrip": false,
|
811 |
+
"single_word": false,
|
812 |
+
"special": true
|
813 |
+
},
|
814 |
+
"101": {
|
815 |
+
"content": "<mask_77>",
|
816 |
+
"lstrip": false,
|
817 |
+
"normalized": false,
|
818 |
+
"rstrip": false,
|
819 |
+
"single_word": false,
|
820 |
+
"special": true
|
821 |
+
},
|
822 |
+
"102": {
|
823 |
+
"content": "<mask_78>",
|
824 |
+
"lstrip": false,
|
825 |
+
"normalized": false,
|
826 |
+
"rstrip": false,
|
827 |
+
"single_word": false,
|
828 |
+
"special": true
|
829 |
+
},
|
830 |
+
"103": {
|
831 |
+
"content": "<mask_79>",
|
832 |
+
"lstrip": false,
|
833 |
+
"normalized": false,
|
834 |
+
"rstrip": false,
|
835 |
+
"single_word": false,
|
836 |
+
"special": true
|
837 |
+
},
|
838 |
+
"104": {
|
839 |
+
"content": "<mask_80>",
|
840 |
+
"lstrip": false,
|
841 |
+
"normalized": false,
|
842 |
+
"rstrip": false,
|
843 |
+
"single_word": false,
|
844 |
+
"special": true
|
845 |
+
},
|
846 |
+
"105": {
|
847 |
+
"content": "<mask_81>",
|
848 |
+
"lstrip": false,
|
849 |
+
"normalized": false,
|
850 |
+
"rstrip": false,
|
851 |
+
"single_word": false,
|
852 |
+
"special": true
|
853 |
+
},
|
854 |
+
"106": {
|
855 |
+
"content": "<mask_82>",
|
856 |
+
"lstrip": false,
|
857 |
+
"normalized": false,
|
858 |
+
"rstrip": false,
|
859 |
+
"single_word": false,
|
860 |
+
"special": true
|
861 |
+
},
|
862 |
+
"107": {
|
863 |
+
"content": "<mask_83>",
|
864 |
+
"lstrip": false,
|
865 |
+
"normalized": false,
|
866 |
+
"rstrip": false,
|
867 |
+
"single_word": false,
|
868 |
+
"special": true
|
869 |
+
},
|
870 |
+
"108": {
|
871 |
+
"content": "<mask_84>",
|
872 |
+
"lstrip": false,
|
873 |
+
"normalized": false,
|
874 |
+
"rstrip": false,
|
875 |
+
"single_word": false,
|
876 |
+
"special": true
|
877 |
+
},
|
878 |
+
"109": {
|
879 |
+
"content": "<mask_85>",
|
880 |
+
"lstrip": false,
|
881 |
+
"normalized": false,
|
882 |
+
"rstrip": false,
|
883 |
+
"single_word": false,
|
884 |
+
"special": true
|
885 |
+
},
|
886 |
+
"110": {
|
887 |
+
"content": "<mask_86>",
|
888 |
+
"lstrip": false,
|
889 |
+
"normalized": false,
|
890 |
+
"rstrip": false,
|
891 |
+
"single_word": false,
|
892 |
+
"special": true
|
893 |
+
},
|
894 |
+
"111": {
|
895 |
+
"content": "<mask_87>",
|
896 |
+
"lstrip": false,
|
897 |
+
"normalized": false,
|
898 |
+
"rstrip": false,
|
899 |
+
"single_word": false,
|
900 |
+
"special": true
|
901 |
+
},
|
902 |
+
"112": {
|
903 |
+
"content": "<mask_88>",
|
904 |
+
"lstrip": false,
|
905 |
+
"normalized": false,
|
906 |
+
"rstrip": false,
|
907 |
+
"single_word": false,
|
908 |
+
"special": true
|
909 |
+
},
|
910 |
+
"113": {
|
911 |
+
"content": "<mask_89>",
|
912 |
+
"lstrip": false,
|
913 |
+
"normalized": false,
|
914 |
+
"rstrip": false,
|
915 |
+
"single_word": false,
|
916 |
+
"special": true
|
917 |
+
},
|
918 |
+
"114": {
|
919 |
+
"content": "<mask_90>",
|
920 |
+
"lstrip": false,
|
921 |
+
"normalized": false,
|
922 |
+
"rstrip": false,
|
923 |
+
"single_word": false,
|
924 |
+
"special": true
|
925 |
+
},
|
926 |
+
"115": {
|
927 |
+
"content": "<mask_91>",
|
928 |
+
"lstrip": false,
|
929 |
+
"normalized": false,
|
930 |
+
"rstrip": false,
|
931 |
+
"single_word": false,
|
932 |
+
"special": true
|
933 |
+
},
|
934 |
+
"116": {
|
935 |
+
"content": "<mask_92>",
|
936 |
+
"lstrip": false,
|
937 |
+
"normalized": false,
|
938 |
+
"rstrip": false,
|
939 |
+
"single_word": false,
|
940 |
+
"special": true
|
941 |
+
},
|
942 |
+
"117": {
|
943 |
+
"content": "<mask_93>",
|
944 |
+
"lstrip": false,
|
945 |
+
"normalized": false,
|
946 |
+
"rstrip": false,
|
947 |
+
"single_word": false,
|
948 |
+
"special": true
|
949 |
+
},
|
950 |
+
"118": {
|
951 |
+
"content": "<mask_94>",
|
952 |
+
"lstrip": false,
|
953 |
+
"normalized": false,
|
954 |
+
"rstrip": false,
|
955 |
+
"single_word": false,
|
956 |
+
"special": true
|
957 |
+
},
|
958 |
+
"119": {
|
959 |
+
"content": "<mask_95>",
|
960 |
+
"lstrip": false,
|
961 |
+
"normalized": false,
|
962 |
+
"rstrip": false,
|
963 |
+
"single_word": false,
|
964 |
+
"special": true
|
965 |
+
},
|
966 |
+
"120": {
|
967 |
+
"content": "<mask_96>",
|
968 |
+
"lstrip": false,
|
969 |
+
"normalized": false,
|
970 |
+
"rstrip": false,
|
971 |
+
"single_word": false,
|
972 |
+
"special": true
|
973 |
+
},
|
974 |
+
"121": {
|
975 |
+
"content": "<mask_97>",
|
976 |
+
"lstrip": false,
|
977 |
+
"normalized": false,
|
978 |
+
"rstrip": false,
|
979 |
+
"single_word": false,
|
980 |
+
"special": true
|
981 |
+
},
|
982 |
+
"122": {
|
983 |
+
"content": "<mask_98>",
|
984 |
+
"lstrip": false,
|
985 |
+
"normalized": false,
|
986 |
+
"rstrip": false,
|
987 |
+
"single_word": false,
|
988 |
+
"special": true
|
989 |
+
},
|
990 |
+
"123": {
|
991 |
+
"content": "<mask_99>",
|
992 |
+
"lstrip": false,
|
993 |
+
"normalized": false,
|
994 |
+
"rstrip": false,
|
995 |
+
"single_word": false,
|
996 |
+
"special": true
|
997 |
+
},
|
998 |
+
"124": {
|
999 |
+
"content": "<mask_100>",
|
1000 |
+
"lstrip": false,
|
1001 |
+
"normalized": false,
|
1002 |
+
"rstrip": false,
|
1003 |
+
"single_word": false,
|
1004 |
+
"special": true
|
1005 |
+
},
|
1006 |
+
"125": {
|
1007 |
+
"content": "<mask_101>",
|
1008 |
+
"lstrip": false,
|
1009 |
+
"normalized": false,
|
1010 |
+
"rstrip": false,
|
1011 |
+
"single_word": false,
|
1012 |
+
"special": true
|
1013 |
+
},
|
1014 |
+
"126": {
|
1015 |
+
"content": "<mask_102>",
|
1016 |
+
"lstrip": false,
|
1017 |
+
"normalized": false,
|
1018 |
+
"rstrip": false,
|
1019 |
+
"single_word": false,
|
1020 |
+
"special": true
|
1021 |
+
},
|
1022 |
+
"127": {
|
1023 |
+
"content": "<mask_103>",
|
1024 |
+
"lstrip": false,
|
1025 |
+
"normalized": false,
|
1026 |
+
"rstrip": false,
|
1027 |
+
"single_word": false,
|
1028 |
+
"special": true
|
1029 |
+
},
|
1030 |
+
"128": {
|
1031 |
+
"content": "<mask_104>",
|
1032 |
+
"lstrip": false,
|
1033 |
+
"normalized": false,
|
1034 |
+
"rstrip": false,
|
1035 |
+
"single_word": false,
|
1036 |
+
"special": true
|
1037 |
+
},
|
1038 |
+
"129": {
|
1039 |
+
"content": "<mask_105>",
|
1040 |
+
"lstrip": false,
|
1041 |
+
"normalized": false,
|
1042 |
+
"rstrip": false,
|
1043 |
+
"single_word": false,
|
1044 |
+
"special": true
|
1045 |
+
},
|
1046 |
+
"130": {
|
1047 |
+
"content": "<mask_106>",
|
1048 |
+
"lstrip": false,
|
1049 |
+
"normalized": false,
|
1050 |
+
"rstrip": false,
|
1051 |
+
"single_word": false,
|
1052 |
+
"special": true
|
1053 |
+
},
|
1054 |
+
"131": {
|
1055 |
+
"content": "<mask_107>",
|
1056 |
+
"lstrip": false,
|
1057 |
+
"normalized": false,
|
1058 |
+
"rstrip": false,
|
1059 |
+
"single_word": false,
|
1060 |
+
"special": true
|
1061 |
+
},
|
1062 |
+
"132": {
|
1063 |
+
"content": "<mask_108>",
|
1064 |
+
"lstrip": false,
|
1065 |
+
"normalized": false,
|
1066 |
+
"rstrip": false,
|
1067 |
+
"single_word": false,
|
1068 |
+
"special": true
|
1069 |
+
},
|
1070 |
+
"133": {
|
1071 |
+
"content": "<mask_109>",
|
1072 |
+
"lstrip": false,
|
1073 |
+
"normalized": false,
|
1074 |
+
"rstrip": false,
|
1075 |
+
"single_word": false,
|
1076 |
+
"special": true
|
1077 |
+
},
|
1078 |
+
"134": {
|
1079 |
+
"content": "<mask_110>",
|
1080 |
+
"lstrip": false,
|
1081 |
+
"normalized": false,
|
1082 |
+
"rstrip": false,
|
1083 |
+
"single_word": false,
|
1084 |
+
"special": true
|
1085 |
+
},
|
1086 |
+
"135": {
|
1087 |
+
"content": "<mask_111>",
|
1088 |
+
"lstrip": false,
|
1089 |
+
"normalized": false,
|
1090 |
+
"rstrip": false,
|
1091 |
+
"single_word": false,
|
1092 |
+
"special": true
|
1093 |
+
},
|
1094 |
+
"136": {
|
1095 |
+
"content": "<mask_112>",
|
1096 |
+
"lstrip": false,
|
1097 |
+
"normalized": false,
|
1098 |
+
"rstrip": false,
|
1099 |
+
"single_word": false,
|
1100 |
+
"special": true
|
1101 |
+
},
|
1102 |
+
"137": {
|
1103 |
+
"content": "<mask_113>",
|
1104 |
+
"lstrip": false,
|
1105 |
+
"normalized": false,
|
1106 |
+
"rstrip": false,
|
1107 |
+
"single_word": false,
|
1108 |
+
"special": true
|
1109 |
+
},
|
1110 |
+
"138": {
|
1111 |
+
"content": "<mask_114>",
|
1112 |
+
"lstrip": false,
|
1113 |
+
"normalized": false,
|
1114 |
+
"rstrip": false,
|
1115 |
+
"single_word": false,
|
1116 |
+
"special": true
|
1117 |
+
},
|
1118 |
+
"139": {
|
1119 |
+
"content": "<mask_115>",
|
1120 |
+
"lstrip": false,
|
1121 |
+
"normalized": false,
|
1122 |
+
"rstrip": false,
|
1123 |
+
"single_word": false,
|
1124 |
+
"special": true
|
1125 |
+
},
|
1126 |
+
"140": {
|
1127 |
+
"content": "<mask_116>",
|
1128 |
+
"lstrip": false,
|
1129 |
+
"normalized": false,
|
1130 |
+
"rstrip": false,
|
1131 |
+
"single_word": false,
|
1132 |
+
"special": true
|
1133 |
+
},
|
1134 |
+
"141": {
|
1135 |
+
"content": "<mask_117>",
|
1136 |
+
"lstrip": false,
|
1137 |
+
"normalized": false,
|
1138 |
+
"rstrip": false,
|
1139 |
+
"single_word": false,
|
1140 |
+
"special": true
|
1141 |
+
},
|
1142 |
+
"142": {
|
1143 |
+
"content": "<mask_118>",
|
1144 |
+
"lstrip": false,
|
1145 |
+
"normalized": false,
|
1146 |
+
"rstrip": false,
|
1147 |
+
"single_word": false,
|
1148 |
+
"special": true
|
1149 |
+
},
|
1150 |
+
"143": {
|
1151 |
+
"content": "<mask_119>",
|
1152 |
+
"lstrip": false,
|
1153 |
+
"normalized": false,
|
1154 |
+
"rstrip": false,
|
1155 |
+
"single_word": false,
|
1156 |
+
"special": true
|
1157 |
+
},
|
1158 |
+
"144": {
|
1159 |
+
"content": "<mask_120>",
|
1160 |
+
"lstrip": false,
|
1161 |
+
"normalized": false,
|
1162 |
+
"rstrip": false,
|
1163 |
+
"single_word": false,
|
1164 |
+
"special": true
|
1165 |
+
},
|
1166 |
+
"145": {
|
1167 |
+
"content": "<mask_121>",
|
1168 |
+
"lstrip": false,
|
1169 |
+
"normalized": false,
|
1170 |
+
"rstrip": false,
|
1171 |
+
"single_word": false,
|
1172 |
+
"special": true
|
1173 |
+
},
|
1174 |
+
"146": {
|
1175 |
+
"content": "<mask_122>",
|
1176 |
+
"lstrip": false,
|
1177 |
+
"normalized": false,
|
1178 |
+
"rstrip": false,
|
1179 |
+
"single_word": false,
|
1180 |
+
"special": true
|
1181 |
+
},
|
1182 |
+
"147": {
|
1183 |
+
"content": "<mask_123>",
|
1184 |
+
"lstrip": false,
|
1185 |
+
"normalized": false,
|
1186 |
+
"rstrip": false,
|
1187 |
+
"single_word": false,
|
1188 |
+
"special": true
|
1189 |
+
},
|
1190 |
+
"148": {
|
1191 |
+
"content": "<mask_124>",
|
1192 |
+
"lstrip": false,
|
1193 |
+
"normalized": false,
|
1194 |
+
"rstrip": false,
|
1195 |
+
"single_word": false,
|
1196 |
+
"special": true
|
1197 |
+
},
|
1198 |
+
"149": {
|
1199 |
+
"content": "<mask_125>",
|
1200 |
+
"lstrip": false,
|
1201 |
+
"normalized": false,
|
1202 |
+
"rstrip": false,
|
1203 |
+
"single_word": false,
|
1204 |
+
"special": true
|
1205 |
+
},
|
1206 |
+
"150": {
|
1207 |
+
"content": "<mask_126>",
|
1208 |
+
"lstrip": false,
|
1209 |
+
"normalized": false,
|
1210 |
+
"rstrip": false,
|
1211 |
+
"single_word": false,
|
1212 |
+
"special": true
|
1213 |
+
},
|
1214 |
+
"151": {
|
1215 |
+
"content": "<mask_127>",
|
1216 |
+
"lstrip": false,
|
1217 |
+
"normalized": false,
|
1218 |
+
"rstrip": false,
|
1219 |
+
"single_word": false,
|
1220 |
+
"special": true
|
1221 |
+
},
|
1222 |
+
"152": {
|
1223 |
+
"content": "<mask_128>",
|
1224 |
+
"lstrip": false,
|
1225 |
+
"normalized": false,
|
1226 |
+
"rstrip": false,
|
1227 |
+
"single_word": false,
|
1228 |
+
"special": true
|
1229 |
+
},
|
1230 |
+
"153": {
|
1231 |
+
"content": "<mask_129>",
|
1232 |
+
"lstrip": false,
|
1233 |
+
"normalized": false,
|
1234 |
+
"rstrip": false,
|
1235 |
+
"single_word": false,
|
1236 |
+
"special": true
|
1237 |
+
},
|
1238 |
+
"154": {
|
1239 |
+
"content": "<mask_130>",
|
1240 |
+
"lstrip": false,
|
1241 |
+
"normalized": false,
|
1242 |
+
"rstrip": false,
|
1243 |
+
"single_word": false,
|
1244 |
+
"special": true
|
1245 |
+
},
|
1246 |
+
"155": {
|
1247 |
+
"content": "<mask_131>",
|
1248 |
+
"lstrip": false,
|
1249 |
+
"normalized": false,
|
1250 |
+
"rstrip": false,
|
1251 |
+
"single_word": false,
|
1252 |
+
"special": true
|
1253 |
+
},
|
1254 |
+
"156": {
|
1255 |
+
"content": "<mask_132>",
|
1256 |
+
"lstrip": false,
|
1257 |
+
"normalized": false,
|
1258 |
+
"rstrip": false,
|
1259 |
+
"single_word": false,
|
1260 |
+
"special": true
|
1261 |
+
},
|
1262 |
+
"157": {
|
1263 |
+
"content": "<mask_133>",
|
1264 |
+
"lstrip": false,
|
1265 |
+
"normalized": false,
|
1266 |
+
"rstrip": false,
|
1267 |
+
"single_word": false,
|
1268 |
+
"special": true
|
1269 |
+
},
|
1270 |
+
"158": {
|
1271 |
+
"content": "<mask_134>",
|
1272 |
+
"lstrip": false,
|
1273 |
+
"normalized": false,
|
1274 |
+
"rstrip": false,
|
1275 |
+
"single_word": false,
|
1276 |
+
"special": true
|
1277 |
+
},
|
1278 |
+
"159": {
|
1279 |
+
"content": "<mask_135>",
|
1280 |
+
"lstrip": false,
|
1281 |
+
"normalized": false,
|
1282 |
+
"rstrip": false,
|
1283 |
+
"single_word": false,
|
1284 |
+
"special": true
|
1285 |
+
},
|
1286 |
+
"160": {
|
1287 |
+
"content": "<mask_136>",
|
1288 |
+
"lstrip": false,
|
1289 |
+
"normalized": false,
|
1290 |
+
"rstrip": false,
|
1291 |
+
"single_word": false,
|
1292 |
+
"special": true
|
1293 |
+
},
|
1294 |
+
"161": {
|
1295 |
+
"content": "<mask_137>",
|
1296 |
+
"lstrip": false,
|
1297 |
+
"normalized": false,
|
1298 |
+
"rstrip": false,
|
1299 |
+
"single_word": false,
|
1300 |
+
"special": true
|
1301 |
+
},
|
1302 |
+
"162": {
|
1303 |
+
"content": "<mask_138>",
|
1304 |
+
"lstrip": false,
|
1305 |
+
"normalized": false,
|
1306 |
+
"rstrip": false,
|
1307 |
+
"single_word": false,
|
1308 |
+
"special": true
|
1309 |
+
},
|
1310 |
+
"163": {
|
1311 |
+
"content": "<mask_139>",
|
1312 |
+
"lstrip": false,
|
1313 |
+
"normalized": false,
|
1314 |
+
"rstrip": false,
|
1315 |
+
"single_word": false,
|
1316 |
+
"special": true
|
1317 |
+
},
|
1318 |
+
"164": {
|
1319 |
+
"content": "<mask_140>",
|
1320 |
+
"lstrip": false,
|
1321 |
+
"normalized": false,
|
1322 |
+
"rstrip": false,
|
1323 |
+
"single_word": false,
|
1324 |
+
"special": true
|
1325 |
+
},
|
1326 |
+
"165": {
|
1327 |
+
"content": "<mask_141>",
|
1328 |
+
"lstrip": false,
|
1329 |
+
"normalized": false,
|
1330 |
+
"rstrip": false,
|
1331 |
+
"single_word": false,
|
1332 |
+
"special": true
|
1333 |
+
},
|
1334 |
+
"166": {
|
1335 |
+
"content": "<mask_142>",
|
1336 |
+
"lstrip": false,
|
1337 |
+
"normalized": false,
|
1338 |
+
"rstrip": false,
|
1339 |
+
"single_word": false,
|
1340 |
+
"special": true
|
1341 |
+
},
|
1342 |
+
"167": {
|
1343 |
+
"content": "<mask_143>",
|
1344 |
+
"lstrip": false,
|
1345 |
+
"normalized": false,
|
1346 |
+
"rstrip": false,
|
1347 |
+
"single_word": false,
|
1348 |
+
"special": true
|
1349 |
+
},
|
1350 |
+
"168": {
|
1351 |
+
"content": "<mask_144>",
|
1352 |
+
"lstrip": false,
|
1353 |
+
"normalized": false,
|
1354 |
+
"rstrip": false,
|
1355 |
+
"single_word": false,
|
1356 |
+
"special": true
|
1357 |
+
},
|
1358 |
+
"169": {
|
1359 |
+
"content": "<mask_145>",
|
1360 |
+
"lstrip": false,
|
1361 |
+
"normalized": false,
|
1362 |
+
"rstrip": false,
|
1363 |
+
"single_word": false,
|
1364 |
+
"special": true
|
1365 |
+
},
|
1366 |
+
"170": {
|
1367 |
+
"content": "<mask_146>",
|
1368 |
+
"lstrip": false,
|
1369 |
+
"normalized": false,
|
1370 |
+
"rstrip": false,
|
1371 |
+
"single_word": false,
|
1372 |
+
"special": true
|
1373 |
+
},
|
1374 |
+
"171": {
|
1375 |
+
"content": "<mask_147>",
|
1376 |
+
"lstrip": false,
|
1377 |
+
"normalized": false,
|
1378 |
+
"rstrip": false,
|
1379 |
+
"single_word": false,
|
1380 |
+
"special": true
|
1381 |
+
},
|
1382 |
+
"172": {
|
1383 |
+
"content": "<mask_148>",
|
1384 |
+
"lstrip": false,
|
1385 |
+
"normalized": false,
|
1386 |
+
"rstrip": false,
|
1387 |
+
"single_word": false,
|
1388 |
+
"special": true
|
1389 |
+
},
|
1390 |
+
"173": {
|
1391 |
+
"content": "<mask_149>",
|
1392 |
+
"lstrip": false,
|
1393 |
+
"normalized": false,
|
1394 |
+
"rstrip": false,
|
1395 |
+
"single_word": false,
|
1396 |
+
"special": true
|
1397 |
+
},
|
1398 |
+
"174": {
|
1399 |
+
"content": "<mask_150>",
|
1400 |
+
"lstrip": false,
|
1401 |
+
"normalized": false,
|
1402 |
+
"rstrip": false,
|
1403 |
+
"single_word": false,
|
1404 |
+
"special": true
|
1405 |
+
},
|
1406 |
+
"175": {
|
1407 |
+
"content": "<mask_151>",
|
1408 |
+
"lstrip": false,
|
1409 |
+
"normalized": false,
|
1410 |
+
"rstrip": false,
|
1411 |
+
"single_word": false,
|
1412 |
+
"special": true
|
1413 |
+
},
|
1414 |
+
"176": {
|
1415 |
+
"content": "<mask_152>",
|
1416 |
+
"lstrip": false,
|
1417 |
+
"normalized": false,
|
1418 |
+
"rstrip": false,
|
1419 |
+
"single_word": false,
|
1420 |
+
"special": true
|
1421 |
+
},
|
1422 |
+
"177": {
|
1423 |
+
"content": "<mask_153>",
|
1424 |
+
"lstrip": false,
|
1425 |
+
"normalized": false,
|
1426 |
+
"rstrip": false,
|
1427 |
+
"single_word": false,
|
1428 |
+
"special": true
|
1429 |
+
},
|
1430 |
+
"178": {
|
1431 |
+
"content": "<mask_154>",
|
1432 |
+
"lstrip": false,
|
1433 |
+
"normalized": false,
|
1434 |
+
"rstrip": false,
|
1435 |
+
"single_word": false,
|
1436 |
+
"special": true
|
1437 |
+
},
|
1438 |
+
"179": {
|
1439 |
+
"content": "<mask_155>",
|
1440 |
+
"lstrip": false,
|
1441 |
+
"normalized": false,
|
1442 |
+
"rstrip": false,
|
1443 |
+
"single_word": false,
|
1444 |
+
"special": true
|
1445 |
+
},
|
1446 |
+
"180": {
|
1447 |
+
"content": "<mask_156>",
|
1448 |
+
"lstrip": false,
|
1449 |
+
"normalized": false,
|
1450 |
+
"rstrip": false,
|
1451 |
+
"single_word": false,
|
1452 |
+
"special": true
|
1453 |
+
},
|
1454 |
+
"181": {
|
1455 |
+
"content": "<mask_157>",
|
1456 |
+
"lstrip": false,
|
1457 |
+
"normalized": false,
|
1458 |
+
"rstrip": false,
|
1459 |
+
"single_word": false,
|
1460 |
+
"special": true
|
1461 |
+
},
|
1462 |
+
"182": {
|
1463 |
+
"content": "<mask_158>",
|
1464 |
+
"lstrip": false,
|
1465 |
+
"normalized": false,
|
1466 |
+
"rstrip": false,
|
1467 |
+
"single_word": false,
|
1468 |
+
"special": true
|
1469 |
+
},
|
1470 |
+
"183": {
|
1471 |
+
"content": "<mask_159>",
|
1472 |
+
"lstrip": false,
|
1473 |
+
"normalized": false,
|
1474 |
+
"rstrip": false,
|
1475 |
+
"single_word": false,
|
1476 |
+
"special": true
|
1477 |
+
},
|
1478 |
+
"184": {
|
1479 |
+
"content": "<mask_160>",
|
1480 |
+
"lstrip": false,
|
1481 |
+
"normalized": false,
|
1482 |
+
"rstrip": false,
|
1483 |
+
"single_word": false,
|
1484 |
+
"special": true
|
1485 |
+
},
|
1486 |
+
"185": {
|
1487 |
+
"content": "<mask_161>",
|
1488 |
+
"lstrip": false,
|
1489 |
+
"normalized": false,
|
1490 |
+
"rstrip": false,
|
1491 |
+
"single_word": false,
|
1492 |
+
"special": true
|
1493 |
+
},
|
1494 |
+
"186": {
|
1495 |
+
"content": "<mask_162>",
|
1496 |
+
"lstrip": false,
|
1497 |
+
"normalized": false,
|
1498 |
+
"rstrip": false,
|
1499 |
+
"single_word": false,
|
1500 |
+
"special": true
|
1501 |
+
},
|
1502 |
+
"187": {
|
1503 |
+
"content": "<mask_163>",
|
1504 |
+
"lstrip": false,
|
1505 |
+
"normalized": false,
|
1506 |
+
"rstrip": false,
|
1507 |
+
"single_word": false,
|
1508 |
+
"special": true
|
1509 |
+
},
|
1510 |
+
"188": {
|
1511 |
+
"content": "<mask_164>",
|
1512 |
+
"lstrip": false,
|
1513 |
+
"normalized": false,
|
1514 |
+
"rstrip": false,
|
1515 |
+
"single_word": false,
|
1516 |
+
"special": true
|
1517 |
+
},
|
1518 |
+
"189": {
|
1519 |
+
"content": "<mask_165>",
|
1520 |
+
"lstrip": false,
|
1521 |
+
"normalized": false,
|
1522 |
+
"rstrip": false,
|
1523 |
+
"single_word": false,
|
1524 |
+
"special": true
|
1525 |
+
},
|
1526 |
+
"190": {
|
1527 |
+
"content": "<mask_166>",
|
1528 |
+
"lstrip": false,
|
1529 |
+
"normalized": false,
|
1530 |
+
"rstrip": false,
|
1531 |
+
"single_word": false,
|
1532 |
+
"special": true
|
1533 |
+
},
|
1534 |
+
"191": {
|
1535 |
+
"content": "<mask_167>",
|
1536 |
+
"lstrip": false,
|
1537 |
+
"normalized": false,
|
1538 |
+
"rstrip": false,
|
1539 |
+
"single_word": false,
|
1540 |
+
"special": true
|
1541 |
+
},
|
1542 |
+
"192": {
|
1543 |
+
"content": "<mask_168>",
|
1544 |
+
"lstrip": false,
|
1545 |
+
"normalized": false,
|
1546 |
+
"rstrip": false,
|
1547 |
+
"single_word": false,
|
1548 |
+
"special": true
|
1549 |
+
},
|
1550 |
+
"193": {
|
1551 |
+
"content": "<mask_169>",
|
1552 |
+
"lstrip": false,
|
1553 |
+
"normalized": false,
|
1554 |
+
"rstrip": false,
|
1555 |
+
"single_word": false,
|
1556 |
+
"special": true
|
1557 |
+
},
|
1558 |
+
"194": {
|
1559 |
+
"content": "<mask_170>",
|
1560 |
+
"lstrip": false,
|
1561 |
+
"normalized": false,
|
1562 |
+
"rstrip": false,
|
1563 |
+
"single_word": false,
|
1564 |
+
"special": true
|
1565 |
+
},
|
1566 |
+
"195": {
|
1567 |
+
"content": "<mask_171>",
|
1568 |
+
"lstrip": false,
|
1569 |
+
"normalized": false,
|
1570 |
+
"rstrip": false,
|
1571 |
+
"single_word": false,
|
1572 |
+
"special": true
|
1573 |
+
},
|
1574 |
+
"196": {
|
1575 |
+
"content": "<mask_172>",
|
1576 |
+
"lstrip": false,
|
1577 |
+
"normalized": false,
|
1578 |
+
"rstrip": false,
|
1579 |
+
"single_word": false,
|
1580 |
+
"special": true
|
1581 |
+
},
|
1582 |
+
"197": {
|
1583 |
+
"content": "<mask_173>",
|
1584 |
+
"lstrip": false,
|
1585 |
+
"normalized": false,
|
1586 |
+
"rstrip": false,
|
1587 |
+
"single_word": false,
|
1588 |
+
"special": true
|
1589 |
+
},
|
1590 |
+
"198": {
|
1591 |
+
"content": "<mask_174>",
|
1592 |
+
"lstrip": false,
|
1593 |
+
"normalized": false,
|
1594 |
+
"rstrip": false,
|
1595 |
+
"single_word": false,
|
1596 |
+
"special": true
|
1597 |
+
},
|
1598 |
+
"199": {
|
1599 |
+
"content": "<mask_175>",
|
1600 |
+
"lstrip": false,
|
1601 |
+
"normalized": false,
|
1602 |
+
"rstrip": false,
|
1603 |
+
"single_word": false,
|
1604 |
+
"special": true
|
1605 |
+
},
|
1606 |
+
"200": {
|
1607 |
+
"content": "<mask_176>",
|
1608 |
+
"lstrip": false,
|
1609 |
+
"normalized": false,
|
1610 |
+
"rstrip": false,
|
1611 |
+
"single_word": false,
|
1612 |
+
"special": true
|
1613 |
+
},
|
1614 |
+
"201": {
|
1615 |
+
"content": "<mask_177>",
|
1616 |
+
"lstrip": false,
|
1617 |
+
"normalized": false,
|
1618 |
+
"rstrip": false,
|
1619 |
+
"single_word": false,
|
1620 |
+
"special": true
|
1621 |
+
},
|
1622 |
+
"202": {
|
1623 |
+
"content": "<mask_178>",
|
1624 |
+
"lstrip": false,
|
1625 |
+
"normalized": false,
|
1626 |
+
"rstrip": false,
|
1627 |
+
"single_word": false,
|
1628 |
+
"special": true
|
1629 |
+
},
|
1630 |
+
"203": {
|
1631 |
+
"content": "<mask_179>",
|
1632 |
+
"lstrip": false,
|
1633 |
+
"normalized": false,
|
1634 |
+
"rstrip": false,
|
1635 |
+
"single_word": false,
|
1636 |
+
"special": true
|
1637 |
+
},
|
1638 |
+
"204": {
|
1639 |
+
"content": "<mask_180>",
|
1640 |
+
"lstrip": false,
|
1641 |
+
"normalized": false,
|
1642 |
+
"rstrip": false,
|
1643 |
+
"single_word": false,
|
1644 |
+
"special": true
|
1645 |
+
},
|
1646 |
+
"205": {
|
1647 |
+
"content": "<mask_181>",
|
1648 |
+
"lstrip": false,
|
1649 |
+
"normalized": false,
|
1650 |
+
"rstrip": false,
|
1651 |
+
"single_word": false,
|
1652 |
+
"special": true
|
1653 |
+
},
|
1654 |
+
"206": {
|
1655 |
+
"content": "<mask_182>",
|
1656 |
+
"lstrip": false,
|
1657 |
+
"normalized": false,
|
1658 |
+
"rstrip": false,
|
1659 |
+
"single_word": false,
|
1660 |
+
"special": true
|
1661 |
+
},
|
1662 |
+
"207": {
|
1663 |
+
"content": "<mask_183>",
|
1664 |
+
"lstrip": false,
|
1665 |
+
"normalized": false,
|
1666 |
+
"rstrip": false,
|
1667 |
+
"single_word": false,
|
1668 |
+
"special": true
|
1669 |
+
},
|
1670 |
+
"208": {
|
1671 |
+
"content": "<mask_184>",
|
1672 |
+
"lstrip": false,
|
1673 |
+
"normalized": false,
|
1674 |
+
"rstrip": false,
|
1675 |
+
"single_word": false,
|
1676 |
+
"special": true
|
1677 |
+
},
|
1678 |
+
"209": {
|
1679 |
+
"content": "<mask_185>",
|
1680 |
+
"lstrip": false,
|
1681 |
+
"normalized": false,
|
1682 |
+
"rstrip": false,
|
1683 |
+
"single_word": false,
|
1684 |
+
"special": true
|
1685 |
+
},
|
1686 |
+
"210": {
|
1687 |
+
"content": "<mask_186>",
|
1688 |
+
"lstrip": false,
|
1689 |
+
"normalized": false,
|
1690 |
+
"rstrip": false,
|
1691 |
+
"single_word": false,
|
1692 |
+
"special": true
|
1693 |
+
},
|
1694 |
+
"211": {
|
1695 |
+
"content": "<mask_187>",
|
1696 |
+
"lstrip": false,
|
1697 |
+
"normalized": false,
|
1698 |
+
"rstrip": false,
|
1699 |
+
"single_word": false,
|
1700 |
+
"special": true
|
1701 |
+
},
|
1702 |
+
"212": {
|
1703 |
+
"content": "<mask_188>",
|
1704 |
+
"lstrip": false,
|
1705 |
+
"normalized": false,
|
1706 |
+
"rstrip": false,
|
1707 |
+
"single_word": false,
|
1708 |
+
"special": true
|
1709 |
+
},
|
1710 |
+
"213": {
|
1711 |
+
"content": "<mask_189>",
|
1712 |
+
"lstrip": false,
|
1713 |
+
"normalized": false,
|
1714 |
+
"rstrip": false,
|
1715 |
+
"single_word": false,
|
1716 |
+
"special": true
|
1717 |
+
},
|
1718 |
+
"214": {
|
1719 |
+
"content": "<mask_190>",
|
1720 |
+
"lstrip": false,
|
1721 |
+
"normalized": false,
|
1722 |
+
"rstrip": false,
|
1723 |
+
"single_word": false,
|
1724 |
+
"special": true
|
1725 |
+
},
|
1726 |
+
"215": {
|
1727 |
+
"content": "<mask_191>",
|
1728 |
+
"lstrip": false,
|
1729 |
+
"normalized": false,
|
1730 |
+
"rstrip": false,
|
1731 |
+
"single_word": false,
|
1732 |
+
"special": true
|
1733 |
+
},
|
1734 |
+
"216": {
|
1735 |
+
"content": "<mask_192>",
|
1736 |
+
"lstrip": false,
|
1737 |
+
"normalized": false,
|
1738 |
+
"rstrip": false,
|
1739 |
+
"single_word": false,
|
1740 |
+
"special": true
|
1741 |
+
},
|
1742 |
+
"217": {
|
1743 |
+
"content": "<mask_193>",
|
1744 |
+
"lstrip": false,
|
1745 |
+
"normalized": false,
|
1746 |
+
"rstrip": false,
|
1747 |
+
"single_word": false,
|
1748 |
+
"special": true
|
1749 |
+
},
|
1750 |
+
"218": {
|
1751 |
+
"content": "<mask_194>",
|
1752 |
+
"lstrip": false,
|
1753 |
+
"normalized": false,
|
1754 |
+
"rstrip": false,
|
1755 |
+
"single_word": false,
|
1756 |
+
"special": true
|
1757 |
+
},
|
1758 |
+
"219": {
|
1759 |
+
"content": "<mask_195>",
|
1760 |
+
"lstrip": false,
|
1761 |
+
"normalized": false,
|
1762 |
+
"rstrip": false,
|
1763 |
+
"single_word": false,
|
1764 |
+
"special": true
|
1765 |
+
},
|
1766 |
+
"220": {
|
1767 |
+
"content": "<mask_196>",
|
1768 |
+
"lstrip": false,
|
1769 |
+
"normalized": false,
|
1770 |
+
"rstrip": false,
|
1771 |
+
"single_word": false,
|
1772 |
+
"special": true
|
1773 |
+
},
|
1774 |
+
"221": {
|
1775 |
+
"content": "<mask_197>",
|
1776 |
+
"lstrip": false,
|
1777 |
+
"normalized": false,
|
1778 |
+
"rstrip": false,
|
1779 |
+
"single_word": false,
|
1780 |
+
"special": true
|
1781 |
+
},
|
1782 |
+
"222": {
|
1783 |
+
"content": "<mask_198>",
|
1784 |
+
"lstrip": false,
|
1785 |
+
"normalized": false,
|
1786 |
+
"rstrip": false,
|
1787 |
+
"single_word": false,
|
1788 |
+
"special": true
|
1789 |
+
},
|
1790 |
+
"223": {
|
1791 |
+
"content": "<mask_199>",
|
1792 |
+
"lstrip": false,
|
1793 |
+
"normalized": false,
|
1794 |
+
"rstrip": false,
|
1795 |
+
"single_word": false,
|
1796 |
+
"special": true
|
1797 |
+
}
|
1798 |
+
},
|
1799 |
+
"bos_token": "<longcat_s>",
|
1800 |
+
"clean_up_tokenization_spaces": false,
|
1801 |
+
"eos_token": "</longcat_s>",
|
1802 |
+
"extra_special_tokens": {},
|
1803 |
+
"merges_file": null,
|
1804 |
+
"model_max_length": 131072,
|
1805 |
+
"pad_token": "<longcat_pad>",
|
1806 |
+
"sp_model_kwargs": {},
|
1807 |
+
"tokenizer_class": "BloomTokenizer",
|
1808 |
+
"unk_token": "<longcat_unk>",
|
1809 |
+
"vocab_file": null
|
1810 |
+
}
|