--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - meituan-longcat/LongCat-Flash-Chat --- This tiny model is for debugging. It is randomly initialized with the config adapted from [meituan-longcat/LongCat-Flash-Chat](https://huggingface.co/meituan-longcat/LongCat-Flash-Chat). ### Example usage: - vLLM ```bash vllm serve tiny-random/longcat-flash \ --trust-remote-code \ --enable-expert-parallel \ --tensor-parallel-size 1 \ --speculative_config '{"model": "tiny-random/longcat-flash", "num_speculative_tokens": 1, "method":"longcat_flash_mtp"}' ``` - SGLang ```bash python3 -m sglang.launch_server \ --model tiny-random/longcat-flash \ --trust-remote-code \ --attention-backend flashinfer \ --enable-ep-moe \ --tp 1 \ --speculative-draft-model-path tiny-random/longcat-flash \ --speculative-algorithm NEXTN \ --speculative-num-draft-tokens 2 \ --speculative-num-steps 1 \ --speculative-eagle-topk 1 ``` - Transformers ```python import torch import transformers model_id = "tiny-random/longcat-flash" pipe = transformers.pipelines.pipeline( 'text-generation', model=model_id, trust_remote_code=True, device_map='cuda', torch_dtype=torch.bfloat16, ) past_key_values = transformers.DynamicCache(config=None) # set config to None r = pipe('Hello, world!', past_key_values=past_key_values, max_new_tokens=32) print(r) ``` ### Codes to create this repo: ```python import json from copy import deepcopy from pathlib import Path import torch import torch.nn as nn from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig, set_seed, ) from transformers.models.glm4_moe.modeling_glm4_moe import Glm4MoeRMSNorm source_model_id = "meituan-longcat/LongCat-Flash-Chat" save_folder = "/tmp/tiny-random/longcat-flash" Path(save_folder).mkdir(parents=True, exist_ok=True) tokenizer = AutoTokenizer.from_pretrained(source_model_id, trust_remote_code=True) tokenizer.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json.update({ 'num_layers': 2, 'hidden_size': 8, 'ffn_hidden_size': 64, 'expert_ffn_hidden_size': 64, 'num_attention_heads': 4, 'kv_lora_rank': 384, 'n_routed_experts': 32, 'q_lora_rank': 32, 'qk_nope_head_dim': 64, 'qk_rope_head_dim': 192, # vllm mla kernel supports 576 only, FA supports head dim <= 256 'v_head_dim': 64, 'moe_topk': 12, 'zero_expert_num': 16, }) # del config_json['quantization_config'] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model = model.cpu() # MTP model.model.mtp = nn.ModuleDict({ "layers": nn.ModuleList([nn.ModuleDict(dict( eh_proj=nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False), enorm=nn.ModuleDict({"m": nn.RMSNorm(config.hidden_size)}), hnorm=nn.ModuleDict({"m": nn.RMSNorm(config.hidden_size)}), input_layernorm=nn.RMSNorm(config.hidden_size), post_attention_layernorm=nn.RMSNorm(config.hidden_size), self_attn=deepcopy(model.model.layers[0].self_attn[0]), transformer_layer=nn.ModuleDict({"mlp": deepcopy(model.model.layers[0].mlps[0])}), ))]), "norm": nn.RMSNorm(config.hidden_size), }) for i in range(config.num_layers): model.model.layers[i].mlp.router = model.model.layers[i].mlp.router.float() # model.model.layers[i].mlp.router.e_score_correction_bias = torch.zeros((config.n_routed_experts + config.zero_expert_num)).float() set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape, p.dtype) model.model.mtp.embed_tokens = deepcopy(model.model.embed_tokens) model.save_pretrained(save_folder) torch.set_default_dtype(torch.float32) for n, m in model.named_modules(): if 'LongcatFlashMLA' in str(type(m)): print(n, m.layer_idx) with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: config_json = json.load(f) config_json['auto_map'] = {k: v.split('--')[-1] for k, v in config_json['auto_map'].items()} with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) ``` ### Printing the model: ```text LongcatFlashForCausalLM( (model): LongcatFlashModel( (embed_tokens): Embedding(131072, 8) (layers): ModuleList( (0-1): 2 x LongcatFlashDecoderLayer( (mlp): LongcatFlashMoE( (experts): ModuleList( (0-31): 32 x LongcatFlashMLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) (router): LongcatFlashTopkRouter( (classifier): Linear(in_features=8, out_features=48, bias=False) ) ) (self_attn): ModuleList( (0-1): 2 x LongcatFlashMLA( (q_a_proj): Linear(in_features=8, out_features=32, bias=False) (q_a_layernorm): LongcatFlashRMSNorm((32,), eps=1e-06) (q_b_proj): Linear(in_features=32, out_features=1024, bias=False) (kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) (kv_a_layernorm): LongcatFlashRMSNorm((384,), eps=1e-06) (kv_b_proj): Linear(in_features=384, out_features=512, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) ) ) (mlps): ModuleList( (0-1): 2 x LongcatFlashMLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) (input_layernorm): ModuleList( (0-1): 2 x LongcatFlashRMSNorm((8,), eps=1e-05) ) (post_attention_layernorm): ModuleList( (0-1): 2 x LongcatFlashRMSNorm((8,), eps=1e-05) ) ) ) (norm): LongcatFlashRMSNorm((8,), eps=1e-05) (rotary_emb): LongcatFlashRotaryEmbedding() (mtp): ModuleDict( (layers): ModuleList( (0): ModuleDict( (eh_proj): Linear(in_features=16, out_features=8, bias=False) (enorm): ModuleDict( (m): RMSNorm((8,), eps=None, elementwise_affine=True) ) (hnorm): ModuleDict( (m): RMSNorm((8,), eps=None, elementwise_affine=True) ) (input_layernorm): RMSNorm((8,), eps=None, elementwise_affine=True) (post_attention_layernorm): RMSNorm((8,), eps=None, elementwise_affine=True) (self_attn): LongcatFlashMLA( (q_a_proj): Linear(in_features=8, out_features=32, bias=False) (q_a_layernorm): LongcatFlashRMSNorm((32,), eps=1e-06) (q_b_proj): Linear(in_features=32, out_features=1024, bias=False) (kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) (kv_a_layernorm): LongcatFlashRMSNorm((384,), eps=1e-06) (kv_b_proj): Linear(in_features=384, out_features=512, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) ) (transformer_layer): ModuleDict( (mlp): LongcatFlashMLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) ) ) (norm): RMSNorm((8,), eps=None, elementwise_affine=True) (embed_tokens): Embedding(131072, 8) ) ) (lm_head): Linear(in_features=8, out_features=131072, bias=False) ) ```