Fine-tuned all-mpnet-base-v2 for SCION RAG retrieval
Browse files- README.md +24 -242
- config.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,258 +1,40 @@
|
|
1 |
---
|
|
|
|
|
2 |
tags:
|
3 |
- sentence-transformers
|
4 |
-
-
|
5 |
-
-
|
6 |
-
-
|
7 |
-
|
8 |
-
-
|
9 |
-
base_model: sentence-transformers/all-MiniLM-L6-v2
|
10 |
-
|
11 |
-
pipeline_tag: sentence-similarity
|
12 |
-
library_name: sentence-transformers
|
13 |
metrics:
|
14 |
-
-
|
15 |
-
- cosine_accuracy@3
|
16 |
-
- cosine_accuracy@5
|
17 |
-
- cosine_accuracy@10
|
18 |
-
- cosine_precision@1
|
19 |
-
- cosine_precision@3
|
20 |
-
- cosine_precision@5
|
21 |
-
- cosine_precision@10
|
22 |
-
- cosine_recall@1
|
23 |
-
- cosine_recall@3
|
24 |
-
- cosine_recall@5
|
25 |
-
- cosine_recall@10
|
26 |
-
- cosine_ndcg@10
|
27 |
-
- cosine_mrr@10
|
28 |
-
- cosine_map@100
|
29 |
-
model-index:
|
30 |
-
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
31 |
-
results:
|
32 |
-
- task:
|
33 |
-
type: information-retrieval
|
34 |
-
name: Information Retrieval
|
35 |
-
dataset:
|
36 |
-
name: val ir eval
|
37 |
-
type: val-ir-eval
|
38 |
-
metrics:
|
39 |
-
- type: cosine_accuracy@1
|
40 |
-
value: 0.6766146993318486
|
41 |
-
name: Cosine Accuracy@1
|
42 |
-
- type: cosine_accuracy@3
|
43 |
-
value: 0.8712694877505568
|
44 |
-
name: Cosine Accuracy@3
|
45 |
-
- type: cosine_accuracy@5
|
46 |
-
value: 0.9131403118040089
|
47 |
-
name: Cosine Accuracy@5
|
48 |
-
- type: cosine_accuracy@10
|
49 |
-
value: 0.9532293986636972
|
50 |
-
name: Cosine Accuracy@10
|
51 |
-
- type: cosine_precision@1
|
52 |
-
value: 0.6766146993318486
|
53 |
-
name: Cosine Precision@1
|
54 |
-
- type: cosine_precision@3
|
55 |
-
value: 0.29042316258351886
|
56 |
-
name: Cosine Precision@3
|
57 |
-
- type: cosine_precision@5
|
58 |
-
value: 0.18271714922048995
|
59 |
-
name: Cosine Precision@5
|
60 |
-
- type: cosine_precision@10
|
61 |
-
value: 0.09536748329621379
|
62 |
-
name: Cosine Precision@10
|
63 |
-
- type: cosine_recall@1
|
64 |
-
value: 0.6766146993318486
|
65 |
-
name: Cosine Recall@1
|
66 |
-
- type: cosine_recall@3
|
67 |
-
value: 0.8710467706013363
|
68 |
-
name: Cosine Recall@3
|
69 |
-
- type: cosine_recall@5
|
70 |
-
value: 0.9131403118040089
|
71 |
-
name: Cosine Recall@5
|
72 |
-
- type: cosine_recall@10
|
73 |
-
value: 0.9532293986636972
|
74 |
-
name: Cosine Recall@10
|
75 |
-
- type: cosine_ndcg@10
|
76 |
-
value: 0.8214443655056687
|
77 |
-
name: Cosine Ndcg@10
|
78 |
-
- type: cosine_mrr@10
|
79 |
-
value: 0.778392194294197
|
80 |
-
name: Cosine Mrr@10
|
81 |
-
- type: cosine_map@100
|
82 |
-
value: 0.7806624678050911
|
83 |
-
name: Cosine Map@100
|
84 |
---
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on a dataset of questions about [SCION](https://scion-architecture.net/) Internet Architecture paired with relevant passages from related research papers and documentation. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
89 |
-
|
90 |
-
## Model Details
|
91 |
-
|
92 |
-
### Model Description
|
93 |
-
- **Model Type:** Sentence Transformer
|
94 |
-
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
|
95 |
-
- **Maximum Sequence Length:** 256 tokens
|
96 |
-
- **Output Dimensionality:** 384 dimensions
|
97 |
-
- **Similarity Function:** Cosine Similarity
|
98 |
-
<!-- - **Training Dataset:** Unknown -->
|
99 |
-
<!-- - **Language:** Unknown -->
|
100 |
-
<!-- - **License:** Unknown -->
|
101 |
-
|
102 |
-
### Model Sources
|
103 |
-
|
104 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
105 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
106 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
107 |
-
|
108 |
-
### Full Model Architecture
|
109 |
-
|
110 |
-
```
|
111 |
-
SentenceTransformer(
|
112 |
-
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
113 |
-
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
114 |
-
(2): Normalize()
|
115 |
-
)
|
116 |
-
```
|
117 |
-
|
118 |
-
## Usage
|
119 |
-
|
120 |
-
### Direct Usage (Sentence Transformers)
|
121 |
-
|
122 |
-
First install the Sentence Transformers library:
|
123 |
-
|
124 |
-
```bash
|
125 |
-
pip install -U sentence-transformers
|
126 |
-
```
|
127 |
-
|
128 |
-
Then you can load this model and run inference.
|
129 |
-
```python
|
130 |
-
from sentence_transformers import SentenceTransformer
|
131 |
-
|
132 |
-
# Download from the 🤗 Hub
|
133 |
-
model = SentenceTransformer("tjohn327/scion-minilm-l6-v2")
|
134 |
-
# Run inference
|
135 |
-
sentences = [
|
136 |
-
""
|
137 |
-
]
|
138 |
-
embeddings = model.encode(sentences)
|
139 |
-
print(embeddings.shape)
|
140 |
-
# [3, 384]
|
141 |
-
|
142 |
-
# Get the similarity scores for the embeddings
|
143 |
-
similarities = model.similarity(embeddings, embeddings)
|
144 |
-
print(similarities.shape)
|
145 |
-
# [3, 3]
|
146 |
-
```
|
147 |
-
|
148 |
-
<!--
|
149 |
-
### Direct Usage (Transformers)
|
150 |
-
|
151 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
152 |
-
|
153 |
-
</details>
|
154 |
-
-->
|
155 |
-
|
156 |
-
<!--
|
157 |
-
### Downstream Usage (Sentence Transformers)
|
158 |
-
|
159 |
-
You can finetune this model on your own dataset.
|
160 |
-
|
161 |
-
<details><summary>Click to expand</summary>
|
162 |
-
|
163 |
-
</details>
|
164 |
-
-->
|
165 |
-
|
166 |
-
<!--
|
167 |
-
### Out-of-Scope Use
|
168 |
-
|
169 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
170 |
-
-->
|
171 |
-
|
172 |
-
## Evaluation
|
173 |
-
|
174 |
-
### Metrics
|
175 |
-
|
176 |
-
#### Information Retrieval
|
177 |
-
|
178 |
-
* Dataset: `val-ir-eval`
|
179 |
-
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
180 |
-
|
181 |
-
| Metric | Value |
|
182 |
-
|:--------------------|:-----------|
|
183 |
-
| cosine_accuracy@1 | 0.6766 |
|
184 |
-
| cosine_accuracy@3 | 0.8713 |
|
185 |
-
| cosine_accuracy@5 | 0.9131 |
|
186 |
-
| cosine_accuracy@10 | 0.9532 |
|
187 |
-
| cosine_precision@1 | 0.6766 |
|
188 |
-
| cosine_precision@3 | 0.2904 |
|
189 |
-
| cosine_precision@5 | 0.1827 |
|
190 |
-
| cosine_precision@10 | 0.0954 |
|
191 |
-
| cosine_recall@1 | 0.6766 |
|
192 |
-
| cosine_recall@3 | 0.871 |
|
193 |
-
| cosine_recall@5 | 0.9131 |
|
194 |
-
| cosine_recall@10 | 0.9532 |
|
195 |
-
| **cosine_ndcg@10** | **0.8214** |
|
196 |
-
| cosine_mrr@10 | 0.7784 |
|
197 |
-
| cosine_map@100 | 0.7807 |
|
198 |
-
|
199 |
-
<!--
|
200 |
-
## Bias, Risks and Limitations
|
201 |
-
|
202 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
203 |
-
-->
|
204 |
-
|
205 |
-
<!--
|
206 |
-
### Recommendations
|
207 |
-
|
208 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
209 |
-
-->
|
210 |
-
|
211 |
-
|
212 |
|
213 |
-
|
214 |
|
215 |
-
|
216 |
|
217 |
-
|
218 |
-
```bibtex
|
219 |
-
@inproceedings{reimers-2019-sentence-bert,
|
220 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
221 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
222 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
223 |
-
month = "11",
|
224 |
-
year = "2019",
|
225 |
-
publisher = "Association for Computational Linguistics",
|
226 |
-
url = "https://arxiv.org/abs/1908.10084",
|
227 |
-
}
|
228 |
-
```
|
229 |
|
230 |
-
|
231 |
-
```bibtex
|
232 |
-
@misc{henderson2017efficient,
|
233 |
-
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
234 |
-
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
235 |
-
year={2017},
|
236 |
-
eprint={1705.00652},
|
237 |
-
archivePrefix={arXiv},
|
238 |
-
primaryClass={cs.CL}
|
239 |
-
}
|
240 |
-
```
|
241 |
|
242 |
-
|
243 |
-
## Glossary
|
244 |
|
245 |
-
|
246 |
-
-->
|
247 |
|
248 |
-
|
249 |
-
## Model Card Authors
|
250 |
|
251 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
252 |
-
-->
|
253 |
|
254 |
-
|
255 |
-
## Model Card Contact
|
256 |
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
tags:
|
5 |
- sentence-transformers
|
6 |
+
- text-embedding
|
7 |
+
- rag
|
8 |
+
- scion-architecture
|
9 |
+
datasets:
|
10 |
+
- custom
|
|
|
|
|
|
|
|
|
11 |
metrics:
|
12 |
+
- retrieval
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
+
# SCION Questions Embedding Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
This model is fine-tuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on a dataset of questions about SCION internet architecture paired with relevant document passages.
|
18 |
|
19 |
+
## Model description
|
20 |
|
21 |
+
The model was fine-tuned to optimize for retrieval performance in RAG applications related to SCION internet architecture.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
## Intended uses & limitations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
This model is specifically trained for retrieving relevant passages from a corpus of SCION Internet Architecture related documentation, specifications and research papers.
|
|
|
26 |
|
27 |
+
## Training procedure
|
|
|
28 |
|
29 |
+
The model was trained using sentence-transformers with MultipleNegativesRankingLoss on query-document pairs.
|
|
|
30 |
|
|
|
|
|
31 |
|
32 |
+
## Performance
|
|
|
33 |
|
34 |
+
| Metric | Base Model | Fine-tuned | Improvement |
|
35 |
+
|--------|------------|------------|-------------|
|
36 |
+
| ndcg@10 | 0.6009 | 0.7928 | +31.92% |
|
37 |
+
| mrr | 0.5476 | 0.7475 | +36.52% |
|
38 |
+
| hits@1 | 0.4395 | 0.6457 | +46.94% |
|
39 |
+
| hits@3 | 0.6211 | 0.8327 | +34.08% |
|
40 |
+
| hits@10 | 0.7686 | 0.9323 | +21.30% |
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "./scion-minilm
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "./scion-minilm",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fae86901ed3c73648f0d768f6a3c6587ec960c43533d2a89296d03cbb96e657b
|
3 |
size 90864192
|