tjohn327 commited on
Commit
a953181
·
verified ·
1 Parent(s): 2cc05b2

Fine-tuned all-mpnet-base-v2 for SCION RAG retrieval

Browse files
Files changed (2) hide show
  1. README.md +55 -38
  2. model.safetensors +1 -1
README.md CHANGED
@@ -375,49 +375,49 @@ model-index:
375
  type: val-ir-eval
376
  metrics:
377
  - type: cosine_accuracy@1
378
- value: 0.6153653653653653
379
  name: Cosine Accuracy@1
380
  - type: cosine_accuracy@3
381
- value: 0.8033033033033034
382
  name: Cosine Accuracy@3
383
  - type: cosine_accuracy@5
384
- value: 0.8578578578578578
385
  name: Cosine Accuracy@5
386
  - type: cosine_accuracy@10
387
- value: 0.9179179179179179
388
  name: Cosine Accuracy@10
389
  - type: cosine_precision@1
390
- value: 0.6153653653653653
391
  name: Cosine Precision@1
392
  - type: cosine_precision@3
393
- value: 0.268018018018018
394
  name: Cosine Precision@3
395
  - type: cosine_precision@5
396
- value: 0.17182182182182182
397
  name: Cosine Precision@5
398
  - type: cosine_precision@10
399
- value: 0.091991991991992
400
  name: Cosine Precision@10
401
  - type: cosine_recall@1
402
- value: 0.6151290179067957
403
  name: Cosine Recall@1
404
  - type: cosine_recall@3
405
- value: 0.8029696363029697
406
  name: Cosine Recall@3
407
  - type: cosine_recall@5
408
- value: 0.8575519964408853
409
  name: Cosine Recall@5
410
  - type: cosine_recall@10
411
- value: 0.9174660771882994
412
  name: Cosine Recall@10
413
  - type: cosine_ndcg@10
414
- value: 0.7686494924105739
415
  name: Cosine Ndcg@10
416
  - type: cosine_mrr@10
417
- value: 0.7208215159604052
418
  name: Cosine Mrr@10
419
  - type: cosine_map@100
420
- value: 0.7240690909632143
421
  name: Cosine Map@100
422
  ---
423
 
@@ -520,21 +520,21 @@ You can finetune this model on your own dataset.
520
 
521
  | Metric | Value |
522
  |:--------------------|:-----------|
523
- | cosine_accuracy@1 | 0.6154 |
524
- | cosine_accuracy@3 | 0.8033 |
525
- | cosine_accuracy@5 | 0.8579 |
526
- | cosine_accuracy@10 | 0.9179 |
527
- | cosine_precision@1 | 0.6154 |
528
- | cosine_precision@3 | 0.268 |
529
- | cosine_precision@5 | 0.1718 |
530
- | cosine_precision@10 | 0.092 |
531
- | cosine_recall@1 | 0.6151 |
532
- | cosine_recall@3 | 0.803 |
533
- | cosine_recall@5 | 0.8576 |
534
- | cosine_recall@10 | 0.9175 |
535
- | **cosine_ndcg@10** | **0.7686** |
536
- | cosine_mrr@10 | 0.7208 |
537
- | cosine_map@100 | 0.7241 |
538
 
539
  <!--
540
  ## Bias, Risks and Limitations
@@ -581,7 +581,6 @@ You can finetune this model on your own dataset.
581
  - `eval_strategy`: steps
582
  - `per_device_train_batch_size`: 64
583
  - `per_device_eval_batch_size`: 64
584
- - `num_train_epochs`: 1
585
  - `fp16`: True
586
  - `multi_dataset_batch_sampler`: round_robin
587
 
@@ -605,7 +604,7 @@ You can finetune this model on your own dataset.
605
  - `adam_beta2`: 0.999
606
  - `adam_epsilon`: 1e-08
607
  - `max_grad_norm`: 1
608
- - `num_train_epochs`: 1
609
  - `max_steps`: -1
610
  - `lr_scheduler_type`: linear
611
  - `lr_scheduler_kwargs`: {}
@@ -707,12 +706,30 @@ You can finetune this model on your own dataset.
707
  </details>
708
 
709
  ### Training Logs
710
- | Epoch | Step | val-ir-eval_cosine_ndcg@10 |
711
- |:------:|:----:|:--------------------------:|
712
- | 0.2740 | 100 | 0.7363 |
713
- | 0.5479 | 200 | 0.7595 |
714
- | 0.8219 | 300 | 0.7648 |
715
- | 1.0 | 365 | 0.7686 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716
 
717
 
718
  ### Framework Versions
 
375
  type: val-ir-eval
376
  metrics:
377
  - type: cosine_accuracy@1
378
+ value: 0.6293793793793794
379
  name: Cosine Accuracy@1
380
  - type: cosine_accuracy@3
381
+ value: 0.8215715715715716
382
  name: Cosine Accuracy@3
383
  - type: cosine_accuracy@5
384
+ value: 0.8763763763763763
385
  name: Cosine Accuracy@5
386
  - type: cosine_accuracy@10
387
+ value: 0.9309309309309309
388
  name: Cosine Accuracy@10
389
  - type: cosine_precision@1
390
+ value: 0.6293793793793794
391
  name: Cosine Precision@1
392
  - type: cosine_precision@3
393
+ value: 0.2739406072739406
394
  name: Cosine Precision@3
395
  - type: cosine_precision@5
396
+ value: 0.17547547547547548
397
  name: Cosine Precision@5
398
  - type: cosine_precision@10
399
+ value: 0.09334334334334335
400
  name: Cosine Precision@10
401
  - type: cosine_recall@1
402
+ value: 0.6291916916916916
403
  name: Cosine Recall@1
404
  - type: cosine_recall@3
405
+ value: 0.8209737515293072
406
  name: Cosine Recall@3
407
  - type: cosine_recall@5
408
+ value: 0.8758689244800356
409
  name: Cosine Recall@5
410
  - type: cosine_recall@10
411
+ value: 0.9305555555555556
412
  name: Cosine Recall@10
413
  - type: cosine_ndcg@10
414
+ value: 0.7827567470448342
415
  name: Cosine Ndcg@10
416
  - type: cosine_mrr@10
417
+ value: 0.7351305670750117
418
  name: Cosine Mrr@10
419
  - type: cosine_map@100
420
+ value: 0.7379411341051004
421
  name: Cosine Map@100
422
  ---
423
 
 
520
 
521
  | Metric | Value |
522
  |:--------------------|:-----------|
523
+ | cosine_accuracy@1 | 0.6294 |
524
+ | cosine_accuracy@3 | 0.8216 |
525
+ | cosine_accuracy@5 | 0.8764 |
526
+ | cosine_accuracy@10 | 0.9309 |
527
+ | cosine_precision@1 | 0.6294 |
528
+ | cosine_precision@3 | 0.2739 |
529
+ | cosine_precision@5 | 0.1755 |
530
+ | cosine_precision@10 | 0.0933 |
531
+ | cosine_recall@1 | 0.6292 |
532
+ | cosine_recall@3 | 0.821 |
533
+ | cosine_recall@5 | 0.8759 |
534
+ | cosine_recall@10 | 0.9306 |
535
+ | **cosine_ndcg@10** | **0.7828** |
536
+ | cosine_mrr@10 | 0.7351 |
537
+ | cosine_map@100 | 0.7379 |
538
 
539
  <!--
540
  ## Bias, Risks and Limitations
 
581
  - `eval_strategy`: steps
582
  - `per_device_train_batch_size`: 64
583
  - `per_device_eval_batch_size`: 64
 
584
  - `fp16`: True
585
  - `multi_dataset_batch_sampler`: round_robin
586
 
 
604
  - `adam_beta2`: 0.999
605
  - `adam_epsilon`: 1e-08
606
  - `max_grad_norm`: 1
607
+ - `num_train_epochs`: 3
608
  - `max_steps`: -1
609
  - `lr_scheduler_type`: linear
610
  - `lr_scheduler_kwargs`: {}
 
706
  </details>
707
 
708
  ### Training Logs
709
+ | Epoch | Step | Training Loss | val-ir-eval_cosine_ndcg@10 |
710
+ |:------:|:----:|:-------------:|:--------------------------:|
711
+ | 0.1372 | 100 | - | 0.6950 |
712
+ | 0.2743 | 200 | - | 0.7313 |
713
+ | 0.4115 | 300 | - | 0.7443 |
714
+ | 0.5487 | 400 | - | 0.7573 |
715
+ | 0.6859 | 500 | 0.3862 | 0.7576 |
716
+ | 0.8230 | 600 | - | 0.7627 |
717
+ | 0.9602 | 700 | - | 0.7662 |
718
+ | 1.0 | 729 | - | 0.7709 |
719
+ | 1.0974 | 800 | - | 0.7705 |
720
+ | 1.2346 | 900 | - | 0.7718 |
721
+ | 1.3717 | 1000 | 0.2356 | 0.7747 |
722
+ | 1.5089 | 1100 | - | 0.7742 |
723
+ | 1.6461 | 1200 | - | 0.7759 |
724
+ | 1.7833 | 1300 | - | 0.7776 |
725
+ | 1.9204 | 1400 | - | 0.7807 |
726
+ | 2.0 | 1458 | - | 0.7815 |
727
+ | 2.0576 | 1500 | 0.1937 | 0.7789 |
728
+ | 2.1948 | 1600 | - | 0.7814 |
729
+ | 2.3320 | 1700 | - | 0.7819 |
730
+ | 2.4691 | 1800 | - | 0.7823 |
731
+ | 2.6063 | 1900 | - | 0.7827 |
732
+ | 2.7435 | 2000 | 0.1758 | 0.7828 |
733
 
734
 
735
  ### Framework Versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9cb83b318d23c5cd6330c6961171323226ef730efec1b139f7d26c5150c2a9c4
3
  size 90864192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:547f3edd35f12fd139aa0b67815aae00adc942a48478cb8352cbb49ea259f697
3
  size 90864192