Fine-tuned all-mpnet-base-v2 for SCION RAG retrieval
Browse files- README.md +55 -38
- model.safetensors +1 -1
README.md
CHANGED
@@ -375,49 +375,49 @@ model-index:
|
|
375 |
type: val-ir-eval
|
376 |
metrics:
|
377 |
- type: cosine_accuracy@1
|
378 |
-
value: 0.
|
379 |
name: Cosine Accuracy@1
|
380 |
- type: cosine_accuracy@3
|
381 |
-
value: 0.
|
382 |
name: Cosine Accuracy@3
|
383 |
- type: cosine_accuracy@5
|
384 |
-
value: 0.
|
385 |
name: Cosine Accuracy@5
|
386 |
- type: cosine_accuracy@10
|
387 |
-
value: 0.
|
388 |
name: Cosine Accuracy@10
|
389 |
- type: cosine_precision@1
|
390 |
-
value: 0.
|
391 |
name: Cosine Precision@1
|
392 |
- type: cosine_precision@3
|
393 |
-
value: 0.
|
394 |
name: Cosine Precision@3
|
395 |
- type: cosine_precision@5
|
396 |
-
value: 0.
|
397 |
name: Cosine Precision@5
|
398 |
- type: cosine_precision@10
|
399 |
-
value: 0.
|
400 |
name: Cosine Precision@10
|
401 |
- type: cosine_recall@1
|
402 |
-
value: 0.
|
403 |
name: Cosine Recall@1
|
404 |
- type: cosine_recall@3
|
405 |
-
value: 0.
|
406 |
name: Cosine Recall@3
|
407 |
- type: cosine_recall@5
|
408 |
-
value: 0.
|
409 |
name: Cosine Recall@5
|
410 |
- type: cosine_recall@10
|
411 |
-
value: 0.
|
412 |
name: Cosine Recall@10
|
413 |
- type: cosine_ndcg@10
|
414 |
-
value: 0.
|
415 |
name: Cosine Ndcg@10
|
416 |
- type: cosine_mrr@10
|
417 |
-
value: 0.
|
418 |
name: Cosine Mrr@10
|
419 |
- type: cosine_map@100
|
420 |
-
value: 0.
|
421 |
name: Cosine Map@100
|
422 |
---
|
423 |
|
@@ -520,21 +520,21 @@ You can finetune this model on your own dataset.
|
|
520 |
|
521 |
| Metric | Value |
|
522 |
|:--------------------|:-----------|
|
523 |
-
| cosine_accuracy@1 | 0.
|
524 |
-
| cosine_accuracy@3 | 0.
|
525 |
-
| cosine_accuracy@5 | 0.
|
526 |
-
| cosine_accuracy@10 | 0.
|
527 |
-
| cosine_precision@1 | 0.
|
528 |
-
| cosine_precision@3 | 0.
|
529 |
-
| cosine_precision@5 | 0.
|
530 |
-
| cosine_precision@10 | 0.
|
531 |
-
| cosine_recall@1 | 0.
|
532 |
-
| cosine_recall@3 | 0.
|
533 |
-
| cosine_recall@5 | 0.
|
534 |
-
| cosine_recall@10 | 0.
|
535 |
-
| **cosine_ndcg@10** | **0.
|
536 |
-
| cosine_mrr@10 | 0.
|
537 |
-
| cosine_map@100 | 0.
|
538 |
|
539 |
<!--
|
540 |
## Bias, Risks and Limitations
|
@@ -581,7 +581,6 @@ You can finetune this model on your own dataset.
|
|
581 |
- `eval_strategy`: steps
|
582 |
- `per_device_train_batch_size`: 64
|
583 |
- `per_device_eval_batch_size`: 64
|
584 |
-
- `num_train_epochs`: 1
|
585 |
- `fp16`: True
|
586 |
- `multi_dataset_batch_sampler`: round_robin
|
587 |
|
@@ -605,7 +604,7 @@ You can finetune this model on your own dataset.
|
|
605 |
- `adam_beta2`: 0.999
|
606 |
- `adam_epsilon`: 1e-08
|
607 |
- `max_grad_norm`: 1
|
608 |
-
- `num_train_epochs`:
|
609 |
- `max_steps`: -1
|
610 |
- `lr_scheduler_type`: linear
|
611 |
- `lr_scheduler_kwargs`: {}
|
@@ -707,12 +706,30 @@ You can finetune this model on your own dataset.
|
|
707 |
</details>
|
708 |
|
709 |
### Training Logs
|
710 |
-
| Epoch | Step | val-ir-eval_cosine_ndcg@10 |
|
711 |
-
|
712 |
-
| 0.
|
713 |
-
| 0.
|
714 |
-
| 0.
|
715 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
716 |
|
717 |
|
718 |
### Framework Versions
|
|
|
375 |
type: val-ir-eval
|
376 |
metrics:
|
377 |
- type: cosine_accuracy@1
|
378 |
+
value: 0.6293793793793794
|
379 |
name: Cosine Accuracy@1
|
380 |
- type: cosine_accuracy@3
|
381 |
+
value: 0.8215715715715716
|
382 |
name: Cosine Accuracy@3
|
383 |
- type: cosine_accuracy@5
|
384 |
+
value: 0.8763763763763763
|
385 |
name: Cosine Accuracy@5
|
386 |
- type: cosine_accuracy@10
|
387 |
+
value: 0.9309309309309309
|
388 |
name: Cosine Accuracy@10
|
389 |
- type: cosine_precision@1
|
390 |
+
value: 0.6293793793793794
|
391 |
name: Cosine Precision@1
|
392 |
- type: cosine_precision@3
|
393 |
+
value: 0.2739406072739406
|
394 |
name: Cosine Precision@3
|
395 |
- type: cosine_precision@5
|
396 |
+
value: 0.17547547547547548
|
397 |
name: Cosine Precision@5
|
398 |
- type: cosine_precision@10
|
399 |
+
value: 0.09334334334334335
|
400 |
name: Cosine Precision@10
|
401 |
- type: cosine_recall@1
|
402 |
+
value: 0.6291916916916916
|
403 |
name: Cosine Recall@1
|
404 |
- type: cosine_recall@3
|
405 |
+
value: 0.8209737515293072
|
406 |
name: Cosine Recall@3
|
407 |
- type: cosine_recall@5
|
408 |
+
value: 0.8758689244800356
|
409 |
name: Cosine Recall@5
|
410 |
- type: cosine_recall@10
|
411 |
+
value: 0.9305555555555556
|
412 |
name: Cosine Recall@10
|
413 |
- type: cosine_ndcg@10
|
414 |
+
value: 0.7827567470448342
|
415 |
name: Cosine Ndcg@10
|
416 |
- type: cosine_mrr@10
|
417 |
+
value: 0.7351305670750117
|
418 |
name: Cosine Mrr@10
|
419 |
- type: cosine_map@100
|
420 |
+
value: 0.7379411341051004
|
421 |
name: Cosine Map@100
|
422 |
---
|
423 |
|
|
|
520 |
|
521 |
| Metric | Value |
|
522 |
|:--------------------|:-----------|
|
523 |
+
| cosine_accuracy@1 | 0.6294 |
|
524 |
+
| cosine_accuracy@3 | 0.8216 |
|
525 |
+
| cosine_accuracy@5 | 0.8764 |
|
526 |
+
| cosine_accuracy@10 | 0.9309 |
|
527 |
+
| cosine_precision@1 | 0.6294 |
|
528 |
+
| cosine_precision@3 | 0.2739 |
|
529 |
+
| cosine_precision@5 | 0.1755 |
|
530 |
+
| cosine_precision@10 | 0.0933 |
|
531 |
+
| cosine_recall@1 | 0.6292 |
|
532 |
+
| cosine_recall@3 | 0.821 |
|
533 |
+
| cosine_recall@5 | 0.8759 |
|
534 |
+
| cosine_recall@10 | 0.9306 |
|
535 |
+
| **cosine_ndcg@10** | **0.7828** |
|
536 |
+
| cosine_mrr@10 | 0.7351 |
|
537 |
+
| cosine_map@100 | 0.7379 |
|
538 |
|
539 |
<!--
|
540 |
## Bias, Risks and Limitations
|
|
|
581 |
- `eval_strategy`: steps
|
582 |
- `per_device_train_batch_size`: 64
|
583 |
- `per_device_eval_batch_size`: 64
|
|
|
584 |
- `fp16`: True
|
585 |
- `multi_dataset_batch_sampler`: round_robin
|
586 |
|
|
|
604 |
- `adam_beta2`: 0.999
|
605 |
- `adam_epsilon`: 1e-08
|
606 |
- `max_grad_norm`: 1
|
607 |
+
- `num_train_epochs`: 3
|
608 |
- `max_steps`: -1
|
609 |
- `lr_scheduler_type`: linear
|
610 |
- `lr_scheduler_kwargs`: {}
|
|
|
706 |
</details>
|
707 |
|
708 |
### Training Logs
|
709 |
+
| Epoch | Step | Training Loss | val-ir-eval_cosine_ndcg@10 |
|
710 |
+
|:------:|:----:|:-------------:|:--------------------------:|
|
711 |
+
| 0.1372 | 100 | - | 0.6950 |
|
712 |
+
| 0.2743 | 200 | - | 0.7313 |
|
713 |
+
| 0.4115 | 300 | - | 0.7443 |
|
714 |
+
| 0.5487 | 400 | - | 0.7573 |
|
715 |
+
| 0.6859 | 500 | 0.3862 | 0.7576 |
|
716 |
+
| 0.8230 | 600 | - | 0.7627 |
|
717 |
+
| 0.9602 | 700 | - | 0.7662 |
|
718 |
+
| 1.0 | 729 | - | 0.7709 |
|
719 |
+
| 1.0974 | 800 | - | 0.7705 |
|
720 |
+
| 1.2346 | 900 | - | 0.7718 |
|
721 |
+
| 1.3717 | 1000 | 0.2356 | 0.7747 |
|
722 |
+
| 1.5089 | 1100 | - | 0.7742 |
|
723 |
+
| 1.6461 | 1200 | - | 0.7759 |
|
724 |
+
| 1.7833 | 1300 | - | 0.7776 |
|
725 |
+
| 1.9204 | 1400 | - | 0.7807 |
|
726 |
+
| 2.0 | 1458 | - | 0.7815 |
|
727 |
+
| 2.0576 | 1500 | 0.1937 | 0.7789 |
|
728 |
+
| 2.1948 | 1600 | - | 0.7814 |
|
729 |
+
| 2.3320 | 1700 | - | 0.7819 |
|
730 |
+
| 2.4691 | 1800 | - | 0.7823 |
|
731 |
+
| 2.6063 | 1900 | - | 0.7827 |
|
732 |
+
| 2.7435 | 2000 | 0.1758 | 0.7828 |
|
733 |
|
734 |
|
735 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:547f3edd35f12fd139aa0b67815aae00adc942a48478cb8352cbb49ea259f697
|
3 |
size 90864192
|