model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- eval/prediction.random.dev.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/twitter-roberta-base-dec2021-tweetner7-random
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6321284238886395
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6142015706806283
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6511332099907493
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.583682304736069
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5654677691354458
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6047150410746663
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7703620544484986
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7484729493891797
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7935700242858795
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6368775235531628
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6616331096196868
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6139076284379865
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.5976605759407211
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6177069721428509
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5812570646484104
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7542395693135936
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7835570469798657
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7270368448365335
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Jacob Collier is a Grammy awarded artist from England."
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/twitter-roberta-base-dec2021-tweetner7-random
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset.
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6321284238886395
|
94 |
+
- Precision (micro): 0.6142015706806283
|
95 |
+
- Recall (micro): 0.6511332099907493
|
96 |
+
- F1 (macro): 0.583682304736069
|
97 |
+
- Precision (macro): 0.5654677691354458
|
98 |
+
- Recall (macro): 0.6047150410746663
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5019685039370079
|
104 |
+
- creative_work: 0.41401273885350315
|
105 |
+
- event: 0.4564727108705458
|
106 |
+
- group: 0.5892444737710327
|
107 |
+
- location: 0.6486486486486486
|
108 |
+
- person: 0.8268075031870332
|
109 |
+
- product: 0.6486215538847118
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6245116881258609, 0.6411928894306437]
|
114 |
+
- 95%: [0.6221686986039963, 0.642603475030015]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6245116881258609, 0.6411928894306437]
|
117 |
+
- 95%: [0.6221686986039963, 0.642603475030015]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner7-random/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner7-random/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/twitter-roberta-base-dec2021-tweetner7-random")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_random
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: cardiffnlp/twitter-roberta-base-dec2021
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 0.0001
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner7-random/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"random.dev": {"micro/f1": 0.6390532544378698, "micro/f1_ci": {}, "micro/recall": 0.6342765616657768, "micro/precision": 0.6439024390243903, "macro/f1": 0.5948376345756554, "macro/f1_ci": {}, "macro/recall": 0.5917630600682918, "macro/precision": 0.5994147209089418, "per_entity_metric": {"corporation": {"f1": 0.5817307692307693, "f1_ci": {}, "precision": 0.5426008968609866, "recall": 0.6269430051813472}, "creative_work": {"f1": 0.4888888888888889, "f1_ci": {}, "precision": 0.5032679738562091, "recall": 0.47530864197530864}, "event": {"f1": 0.3907563025210084, "f1_ci": {}, "precision": 0.4025974025974026, "recall": 0.3795918367346939}, "group": {"f1": 0.6050670640834576, "f1_ci": {}, "precision": 0.6246153846153846, "recall": 0.5867052023121387}, "location": {"f1": 0.6191950464396285, "f1_ci": {}, "precision": 0.625, "recall": 0.6134969325153374}, "person": {"f1": 0.84593837535014, "f1_ci": {}, "precision": 0.8420074349442379, "recall": 0.849906191369606}, "product": {"f1": 0.632286995515695, "f1_ci": {}, "precision": 0.6558139534883721, "recall": 0.6103896103896104}}}, "2021.test": {"micro/f1": 0.6321284238886395, "micro/f1_ci": {"90": [0.6245116881258609, 0.6411928894306437], "95": [0.6221686986039963, 0.642603475030015]}, "micro/recall": 0.6511332099907493, "micro/precision": 0.6142015706806283, "macro/f1": 0.583682304736069, "macro/f1_ci": {"90": [0.5745215695064868, 0.5935538510061642], "95": [0.5721210274985685, 0.5949826139031175]}, "macro/recall": 0.6047150410746663, "macro/precision": 0.5654677691354458, "per_entity_metric": {"corporation": {"f1": 0.5019685039370079, "f1_ci": {"90": [0.4775046763935653, 0.5276263097468425], "95": [0.4708860124040466, 0.5322353978734399]}, "precision": 0.450530035335689, "recall": 0.5666666666666667}, "creative_work": {"f1": 0.41401273885350315, "f1_ci": {"90": [0.3838081951821538, 0.446030537527557], "95": [0.3785096669891205, 0.4516264083963575]}, "precision": 0.3873659117997616, "recall": 0.44459644322845415}, "event": {"f1": 0.4564727108705458, "f1_ci": {"90": [0.43317409571140686, 0.47845101312231], "95": [0.42696327577105797, 0.48275945643271434]}, "precision": 0.4525939177101968, "recall": 0.4604185623293904}, "group": {"f1": 0.5892444737710327, "f1_ci": {"90": [0.5689646859309015, 0.6108478406183305], "95": [0.564631734245271, 0.6146674362079695]}, "precision": 0.5902181097157965, "recall": 0.5882740447957839}, "location": {"f1": 0.6486486486486486, "f1_ci": {"90": [0.6209685619384042, 0.6762750470285591], "95": [0.6156787330316741, 0.6811199553135038]}, "precision": 0.6282722513089005, "recall": 0.6703910614525139}, "person": {"f1": 0.8268075031870332, "f1_ci": {"90": [0.8166678815298463, 0.8379175120851383], "95": [0.8152424612453091, 0.8395018891964325]}, "precision": 0.8168405901403383, "recall": 0.8370206489675516}, "product": {"f1": 0.6486215538847118, "f1_ci": {"90": [0.6270291403273055, 0.6710524317515882], "95": [0.6216769714725208, 0.674748088790642]}, "precision": 0.6324535679374389, "recall": 0.6656378600823045}}}, "2020.test": {"micro/f1": 0.6368775235531628, "micro/f1_ci": {"90": [0.6169064115810362, 0.6559384186705487], "95": [0.6141058003386577, 0.6594030324221372]}, "micro/recall": 0.6139076284379865, "micro/precision": 0.6616331096196868, "macro/f1": 0.5976605759407211, "macro/f1_ci": {"90": [0.5759632782880849, 0.6166251611368425], "95": [0.5736091476367275, 0.620115150872923]}, "macro/recall": 0.5812570646484104, "macro/precision": 0.6177069721428509, "per_entity_metric": {"corporation": {"f1": 0.56, "f1_ci": {"90": [0.5013616633738992, 0.6116487952836637], "95": [0.4910296600700221, 0.6227328614008941]}, "precision": 0.5358851674641149, "recall": 0.5863874345549738}, "creative_work": {"f1": 0.5166666666666666, "f1_ci": {"90": [0.46151629350476603, 0.5722086282622287], "95": [0.4514431946006749, 0.5835841303677111]}, "precision": 0.5138121546961326, "recall": 0.5195530726256983}, "event": {"f1": 0.4137931034482759, "f1_ci": {"90": [0.3618226809356626, 0.46421880458537457], "95": [0.35246839778317457, 0.47369129736369653]}, "precision": 0.4473684210526316, "recall": 0.3849056603773585}, "group": {"f1": 0.5693950177935941, "f1_ci": {"90": [0.5249356080118784, 0.6172953291232861], "95": [0.515244168484645, 0.6276404963608163]}, "precision": 0.6374501992031872, "recall": 0.5144694533762058}, "location": {"f1": 0.6747720364741642, "f1_ci": {"90": [0.6173401259613639, 0.7267984140530545], "95": [0.604807000719252, 0.7348546893498322]}, "precision": 0.676829268292683, "recall": 0.6727272727272727}, "person": {"f1": 0.8222029488291414, "f1_ci": {"90": [0.7938635459282011, 0.846929422548121], "95": [0.7895076867859065, 0.851171304347826]}, "precision": 0.8509874326750448, "recall": 0.7953020134228188}, "product": {"f1": 0.6267942583732058, "f1_ci": {"90": [0.5756898281700741, 0.6747046867175303], "95": [0.5657433380084151, 0.6810691357228119]}, "precision": 0.6616161616161617, "recall": 0.5954545454545455}}}, "2021.test (span detection)": {"micro/f1": 0.7703620544484986, "micro/f1_ci": {}, "micro/recall": 0.7935700242858795, "micro/precision": 0.7484729493891797, "macro/f1": 0.7703620544484986, "macro/f1_ci": {}, "macro/recall": 0.7935700242858795, "macro/precision": 0.7484729493891797}, "2020.test (span detection)": {"micro/f1": 0.7542395693135936, "micro/f1_ci": {}, "micro/recall": 0.7270368448365335, "micro/precision": 0.7835570469798657, "macro/f1": 0.7542395693135936, "macro/f1_ci": {}, "macro/recall": 0.7270368448365335, "macro/precision": 0.7835570469798657}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6368775235531628, "micro/f1_ci": {"90": [0.6169064115810362, 0.6559384186705487], "95": [0.6141058003386577, 0.6594030324221372]}, "micro/recall": 0.6139076284379865, "micro/precision": 0.6616331096196868, "macro/f1": 0.5976605759407211, "macro/f1_ci": {"90": [0.5759632782880849, 0.6166251611368425], "95": [0.5736091476367275, 0.620115150872923]}, "macro/recall": 0.5812570646484104, "macro/precision": 0.6177069721428509, "per_entity_metric": {"corporation": {"f1": 0.56, "f1_ci": {"90": [0.5013616633738992, 0.6116487952836637], "95": [0.4910296600700221, 0.6227328614008941]}, "precision": 0.5358851674641149, "recall": 0.5863874345549738}, "creative_work": {"f1": 0.5166666666666666, "f1_ci": {"90": [0.46151629350476603, 0.5722086282622287], "95": [0.4514431946006749, 0.5835841303677111]}, "precision": 0.5138121546961326, "recall": 0.5195530726256983}, "event": {"f1": 0.4137931034482759, "f1_ci": {"90": [0.3618226809356626, 0.46421880458537457], "95": [0.35246839778317457, 0.47369129736369653]}, "precision": 0.4473684210526316, "recall": 0.3849056603773585}, "group": {"f1": 0.5693950177935941, "f1_ci": {"90": [0.5249356080118784, 0.6172953291232861], "95": [0.515244168484645, 0.6276404963608163]}, "precision": 0.6374501992031872, "recall": 0.5144694533762058}, "location": {"f1": 0.6747720364741642, "f1_ci": {"90": [0.6173401259613639, 0.7267984140530545], "95": [0.604807000719252, 0.7348546893498322]}, "precision": 0.676829268292683, "recall": 0.6727272727272727}, "person": {"f1": 0.8222029488291414, "f1_ci": {"90": [0.7938635459282011, 0.846929422548121], "95": [0.7895076867859065, 0.851171304347826]}, "precision": 0.8509874326750448, "recall": 0.7953020134228188}, "product": {"f1": 0.6267942583732058, "f1_ci": {"90": [0.5756898281700741, 0.6747046867175303], "95": [0.5657433380084151, 0.6810691357228119]}, "precision": 0.6616161616161617, "recall": 0.5954545454545455}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6321284238886395, "micro/f1_ci": {"90": [0.6245116881258609, 0.6411928894306437], "95": [0.6221686986039963, 0.642603475030015]}, "micro/recall": 0.6511332099907493, "micro/precision": 0.6142015706806283, "macro/f1": 0.583682304736069, "macro/f1_ci": {"90": [0.5745215695064868, 0.5935538510061642], "95": [0.5721210274985685, 0.5949826139031175]}, "macro/recall": 0.6047150410746663, "macro/precision": 0.5654677691354458, "per_entity_metric": {"corporation": {"f1": 0.5019685039370079, "f1_ci": {"90": [0.4775046763935653, 0.5276263097468425], "95": [0.4708860124040466, 0.5322353978734399]}, "precision": 0.450530035335689, "recall": 0.5666666666666667}, "creative_work": {"f1": 0.41401273885350315, "f1_ci": {"90": [0.3838081951821538, 0.446030537527557], "95": [0.3785096669891205, 0.4516264083963575]}, "precision": 0.3873659117997616, "recall": 0.44459644322845415}, "event": {"f1": 0.4564727108705458, "f1_ci": {"90": [0.43317409571140686, 0.47845101312231], "95": [0.42696327577105797, 0.48275945643271434]}, "precision": 0.4525939177101968, "recall": 0.4604185623293904}, "group": {"f1": 0.5892444737710327, "f1_ci": {"90": [0.5689646859309015, 0.6108478406183305], "95": [0.564631734245271, 0.6146674362079695]}, "precision": 0.5902181097157965, "recall": 0.5882740447957839}, "location": {"f1": 0.6486486486486486, "f1_ci": {"90": [0.6209685619384042, 0.6762750470285591], "95": [0.6156787330316741, 0.6811199553135038]}, "precision": 0.6282722513089005, "recall": 0.6703910614525139}, "person": {"f1": 0.8268075031870332, "f1_ci": {"90": [0.8166678815298463, 0.8379175120851383], "95": [0.8152424612453091, 0.8395018891964325]}, "precision": 0.8168405901403383, "recall": 0.8370206489675516}, "product": {"f1": 0.6486215538847118, "f1_ci": {"90": [0.6270291403273055, 0.6710524317515882], "95": [0.6216769714725208, 0.674748088790642]}, "precision": 0.6324535679374389, "recall": 0.6656378600823045}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7542395693135936, "micro/f1_ci": {}, "micro/recall": 0.7270368448365335, "micro/precision": 0.7835570469798657, "macro/f1": 0.7542395693135936, "macro/f1_ci": {}, "macro/recall": 0.7270368448365335, "macro/precision": 0.7835570469798657}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7703620544484986, "micro/f1_ci": {}, "micro/recall": 0.7935700242858795, "micro/precision": 0.7484729493891797, "macro/f1": 0.7703620544484986, "macro/f1_ci": {}, "macro/recall": 0.7935700242858795, "macro/precision": 0.7484729493891797}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.random.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_random", "dataset_name": null, "local_dataset": null, "model": "cardiffnlp/twitter-roberta-base-dec2021", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 0.0001, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|