tomaarsen HF Staff commited on
Commit
b2149e6
·
verified ·
1 Parent(s): 03d780c

Create train_script.py

Browse files
Files changed (1) hide show
  1. train_script.py +122 -0
train_script.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # See https://huggingface.co/collections/tomaarsen/training-with-prompts-672ce423c85b4d39aed52853 for some already trained models
2
+
3
+ import logging
4
+ import random
5
+
6
+ import numpy
7
+ import torch
8
+ from datasets import Dataset, load_dataset
9
+
10
+ from sentence_transformers import (
11
+ SentenceTransformer,
12
+ SentenceTransformerModelCardData,
13
+ SentenceTransformerTrainer,
14
+ SentenceTransformerTrainingArguments,
15
+ )
16
+ from sentence_transformers.evaluation import NanoBEIREvaluator
17
+ from sentence_transformers.losses import CachedMultipleNegativesRankingLoss
18
+ from sentence_transformers.training_args import BatchSamplers
19
+ from sentence_transformers.models import Pooling
20
+
21
+ logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
22
+ random.seed(12)
23
+ torch.manual_seed(12)
24
+ numpy.random.seed(12)
25
+
26
+ # Feel free to adjust these variables:
27
+ use_prompts = True
28
+ include_prompts_in_pooling = True
29
+
30
+ # 1. Load a model to finetune with 2. (Optional) model card data
31
+ model = SentenceTransformer(
32
+ "LiquidAI/LFM2-350M",
33
+ model_card_data=SentenceTransformerModelCardData(
34
+ language="en",
35
+ license="apache-2.0",
36
+ model_name="LiquidAI/LFM2-350M trained on Natural Questions pairs",
37
+ ),
38
+ trust_remote_code=True,
39
+ )
40
+ assert isinstance(model[1], Pooling)
41
+ model[1].pooling_mode_mean_tokens = False
42
+ model[1].pooling_mode_lasttoken = True
43
+ model.set_pooling_include_prompt(include_prompts_in_pooling)
44
+ print(model)
45
+
46
+ # 2. (Optional) Define prompts
47
+ if use_prompts:
48
+ query_prompt = "query: "
49
+ corpus_prompt = "document: "
50
+ prompts = {
51
+ "query": query_prompt,
52
+ "answer": corpus_prompt,
53
+ }
54
+
55
+ # 3. Load a dataset to finetune on
56
+ dataset = load_dataset("sentence-transformers/natural-questions", split="train")
57
+ dataset_dict = dataset.train_test_split(test_size=1_000, seed=12)
58
+ train_dataset: Dataset = dataset_dict["train"]
59
+ eval_dataset: Dataset = dataset_dict["test"]
60
+
61
+ # 4. Define a loss function
62
+ loss = CachedMultipleNegativesRankingLoss(model, mini_batch_size=4)
63
+
64
+ # 5. (Optional) Specify training arguments
65
+ run_name = "LFM2-350M-nq"
66
+ if use_prompts:
67
+ run_name += "-prompts"
68
+ if not include_prompts_in_pooling:
69
+ run_name += "-exclude-pooling-prompts"
70
+ args = SentenceTransformerTrainingArguments(
71
+ # Required parameter:
72
+ output_dir=f"models/{run_name}",
73
+ # Optional training parameters:
74
+ num_train_epochs=1,
75
+ per_device_train_batch_size=256,
76
+ per_device_eval_batch_size=256,
77
+ learning_rate=2e-5,
78
+ warmup_ratio=0.1,
79
+ fp16=False, # Set to False if you get an error that your GPU can't run on FP16
80
+ bf16=True, # Set to True if you have a GPU that supports BF16
81
+ batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
82
+ # Optional tracking/debugging parameters:
83
+ eval_strategy="steps",
84
+ eval_steps=50,
85
+ save_strategy="steps",
86
+ save_steps=50,
87
+ save_total_limit=2,
88
+ logging_steps=5,
89
+ logging_first_step=True,
90
+ run_name=run_name, # Will be used in W&B if `wandb` is installed
91
+ seed=12,
92
+ prompts=prompts if use_prompts else None,
93
+ )
94
+
95
+ # 6. (Optional) Create an evaluator & evaluate the base model
96
+ dev_evaluator = NanoBEIREvaluator(
97
+ dataset_names=["msmarco", "nfcorpus", "nq"],
98
+ query_prompts=query_prompt if use_prompts else None,
99
+ corpus_prompts=corpus_prompt if use_prompts else None,
100
+ batch_size=16,
101
+ )
102
+ dev_evaluator(model)
103
+
104
+ # 7. Create a trainer & train
105
+ trainer = SentenceTransformerTrainer(
106
+ model=model,
107
+ args=args,
108
+ train_dataset=train_dataset,
109
+ eval_dataset=eval_dataset,
110
+ loss=loss,
111
+ evaluator=dev_evaluator,
112
+ )
113
+ trainer.train()
114
+
115
+ # (Optional) Evaluate the trained model on the evaluator after training
116
+ dev_evaluator(model)
117
+
118
+ # 8. Save the trained model
119
+ model.save_pretrained(f"models/{run_name}/final")
120
+
121
+ # 9. (Optional) Push it to the Hugging Face Hub
122
+ model.push_to_hub(run_name)