File size: 31,221 Bytes
3bc52da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3012496
- loss:MultipleNegativesRankingLoss
base_model: nreimers/MiniLM-L6-H384-uncased
widget:
- source_sentence: what is the current old age pension uk?
sentences:
- Unlike divorce, a legal separation does not put an end to the marriage, it enables
you to live separately but remain married. ... Issues that can be addressed in
a separation agreement are division of assets and debts, child custody and support,
visitation schedules and spousal support.
- The full basic State Pension is £134.25 per week. There are ways you can increase
your State Pension up to or above the full amount. You may have to pay tax on
your State Pension. To get information about your State Pension, contact the Pension
Service.
- Most often, chili seasoning is a mix of 5-8 spices including chili powder, cumin,
garlic, oregano, and others. Chili seasoning is similar to homemade taco seasoning
and fajita seasoning, with many of the same ingredients but has more of an emphasis
on chili powder.
- source_sentence: how to calculate percentage of ratio?
sentences:
- Ratios are often expressed in the form m:n or m/n. To convert a ratio into the
form of a percentage, simply divide m by n and then multiply the result by 100.
For example, If the ratio is 12:4, convert it to the form 12/4, which is an equation
we can solve. After that multiply the result by 100 to get the percentage.
- For anyone new to Roblox here's a quick explanation as to what an obby is. An
obby is, quite simply, an obstacle course that you need to get around in order
to complete it. They can include jumps, climbing, guessing games and trampolines
to name just a few obstacles.
- “relative” means, with respect to a public official, an individual who is related
to the public official as father, mother, son, daughter, brother, sister, uncle,
aunt, first cousin, nephew, niece, husband, wife, father-in-law, mother-in-law,
son-in-law, daughter-in-law, brother-in-law, sister-in-law, stepfather, ...
- source_sentence: if you block someone on facebook do you lose your messages?
sentences:
- 1 Answer. If you block someone on Facebook or messenger, you both will not be
able to each others activities and also not be able to send messages. Old conversation
will be still in inbox but name of that person will not be clickable.
- Your hourly wage of 37 dollars would end up being about $76,960 per year in salary.
- '[''Tap Download while watching a video in the YouTube app.'', ''Tap Library to
find your downloads.'', ''Tap Downloads. From here, you can tap the More button
(the three dots) to delete videos from your device.'']'
- source_sentence: fifa 20 how to drag back?
sentences:
- Component is a directive which use shadow DOM to create encapsulate visual behavior
called components. Components are typically used to create UI widgets. Directives
is used to add behavior to an existing DOM element. Component is used to break
up the application into smaller components.
- Enabling debug output in LWIP To enable specific debug messages in LWIP, just
set the specific define value for the LWIP *_DEBUG value to " LWIP_DBG_ON". A
full list of debug defines that can be enabled can be found in the opts. h file.
Just copy the defines for the debug messages you want to enable into the lwipopts.
- Drag Back (2 Star Skill Move) The drag back has been a popular skill move in FIFA
for years now, and remains highly effective in FIFA 20. Again, it's fairly simple
- hold the RB or R1 button, and then push the left stick away from the direction
you're facing to drag the ball backwards.
- source_sentence: is jordyn a boy or girl?
sentences:
- 'Gender Popularity of the Name "Jordyn" Jordyn: It''s a girl! Since 1880, a total
of 2,696 boys have been given the name Jordyn while 39,618 girls were named Jordyn.'
- Temporary Infertility After Depo But not every woman will get their cycle back
5 months after the last injection. In some cases, it may take up to 22 months—or
almost two years—for fertility to return after the last injection.
- Currently there is no research showing that juice cleanses are beneficial to weight
loss or that they should be recommended at all. Even though it is possible to
cut a significant amount of calories by only drinking juice, you could also be
missing out on some essential nutrition - like protein, fiber and healthy fats.
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
emissions: 22.00215266567056
energy_consumed: 0.056604166342520905
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.206
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on AllNLI triplets
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: gooaq dev
type: gooaq-dev
metrics:
- type: cosine_accuracy@1
value: 0.5589
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7234
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7801
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8456
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5589
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2411333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15602000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08456
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5589
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7234
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7801
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8456
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7000016898403962
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6536087301587268
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.659379113770559
name: Cosine Map@100
---
# MPNet base trained on AllNLI triplets
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) <!-- at revision 3276f0fac9d818781d7a1327b3ff818fc4e643c0 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/MiniLM-L6-H384-uncased-gooaq-no-asym")
# Run inference
sentences = [
'is jordyn a boy or girl?',
'Gender Popularity of the Name "Jordyn" Jordyn: It\'s a girl! Since 1880, a total of 2,696 boys have been given the name Jordyn while 39,618 girls were named Jordyn.',
'Currently there is no research showing that juice cleanses are beneficial to weight loss or that they should be recommended at all. Even though it is possible to cut a significant amount of calories by only drinking juice, you could also be missing out on some essential nutrition - like protein, fiber and healthy fats.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `gooaq-dev`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:--------|
| cosine_accuracy@1 | 0.5589 |
| cosine_accuracy@3 | 0.7234 |
| cosine_accuracy@5 | 0.7801 |
| cosine_accuracy@10 | 0.8456 |
| cosine_precision@1 | 0.5589 |
| cosine_precision@3 | 0.2411 |
| cosine_precision@5 | 0.156 |
| cosine_precision@10 | 0.0846 |
| cosine_recall@1 | 0.5589 |
| cosine_recall@3 | 0.7234 |
| cosine_recall@5 | 0.7801 |
| cosine_recall@10 | 0.8456 |
| **cosine_ndcg@10** | **0.7** |
| cosine_mrr@10 | 0.6536 |
| cosine_map@100 | 0.6594 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.86 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.48 tokens</li><li>max: 138 tokens</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the difference between broilers and layers?</code> | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code> |
| <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> |
| <code>is kamagra same as viagra?</code> | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.88 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 61.03 tokens</li><li>max: 127 tokens</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how do i program my directv remote with my tv?</code> | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code> |
| <code>are rodrigues fruit bats nocturnal?</code> | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code> |
| <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 24
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 24
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | gooaq-dev_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:------------------------:|
| -1 | -1 | - | - | 0.0303 |
| 0.0003 | 1 | 4.2106 | - | - |
| 0.0128 | 50 | 4.1241 | - | - |
| 0.0256 | 100 | 3.3791 | - | - |
| 0.0384 | 150 | 1.8925 | - | - |
| 0.0512 | 200 | 1.1582 | - | - |
| 0.0640 | 250 | 0.8751 | - | - |
| 0.0768 | 300 | 0.6851 | - | - |
| 0.0896 | 350 | 0.5779 | - | - |
| 0.1024 | 400 | 0.5251 | - | - |
| 0.1152 | 450 | 0.4873 | - | - |
| 0.1280 | 500 | 0.4467 | 0.3056 | 0.6054 |
| 0.1408 | 550 | 0.3989 | - | - |
| 0.1536 | 600 | 0.398 | - | - |
| 0.1664 | 650 | 0.3708 | - | - |
| 0.1792 | 700 | 0.3656 | - | - |
| 0.1920 | 750 | 0.3382 | - | - |
| 0.2048 | 800 | 0.3333 | - | - |
| 0.2176 | 850 | 0.3006 | - | - |
| 0.2304 | 900 | 0.3065 | - | - |
| 0.2432 | 950 | 0.3277 | - | - |
| 0.2560 | 1000 | 0.2941 | 0.2089 | 0.6556 |
| 0.2687 | 1050 | 0.2918 | - | - |
| 0.2815 | 1100 | 0.2935 | - | - |
| 0.2943 | 1150 | 0.2834 | - | - |
| 0.3071 | 1200 | 0.2795 | - | - |
| 0.3199 | 1250 | 0.2783 | - | - |
| 0.3327 | 1300 | 0.2828 | - | - |
| 0.3455 | 1350 | 0.2727 | - | - |
| 0.3583 | 1400 | 0.2626 | - | - |
| 0.3711 | 1450 | 0.2519 | - | - |
| 0.3839 | 1500 | 0.2461 | 0.1769 | 0.6743 |
| 0.3967 | 1550 | 0.2602 | - | - |
| 0.4095 | 1600 | 0.2398 | - | - |
| 0.4223 | 1650 | 0.2421 | - | - |
| 0.4351 | 1700 | 0.2365 | - | - |
| 0.4479 | 1750 | 0.2351 | - | - |
| 0.4607 | 1800 | 0.2412 | - | - |
| 0.4735 | 1850 | 0.2308 | - | - |
| 0.4863 | 1900 | 0.2217 | - | - |
| 0.4991 | 1950 | 0.2315 | - | - |
| 0.5119 | 2000 | 0.2295 | 0.1598 | 0.6856 |
| 0.5247 | 2050 | 0.2157 | - | - |
| 0.5375 | 2100 | 0.2123 | - | - |
| 0.5503 | 2150 | 0.2236 | - | - |
| 0.5631 | 2200 | 0.2098 | - | - |
| 0.5759 | 2250 | 0.2208 | - | - |
| 0.5887 | 2300 | 0.2159 | - | - |
| 0.6015 | 2350 | 0.2087 | - | - |
| 0.6143 | 2400 | 0.22 | - | - |
| 0.6271 | 2450 | 0.2002 | - | - |
| 0.6399 | 2500 | 0.1999 | 0.1466 | 0.6915 |
| 0.6527 | 2550 | 0.1986 | - | - |
| 0.6655 | 2600 | 0.2238 | - | - |
| 0.6783 | 2650 | 0.2141 | - | - |
| 0.6911 | 2700 | 0.2154 | - | - |
| 0.7039 | 2750 | 0.1993 | - | - |
| 0.7167 | 2800 | 0.1946 | - | - |
| 0.7295 | 2850 | 0.2064 | - | - |
| 0.7423 | 2900 | 0.2179 | - | - |
| 0.7551 | 2950 | 0.1976 | - | - |
| 0.7679 | 3000 | 0.2081 | 0.1384 | 0.6964 |
| 0.7807 | 3050 | 0.1863 | - | - |
| 0.7934 | 3100 | 0.2022 | - | - |
| 0.8062 | 3150 | 0.2132 | - | - |
| 0.8190 | 3200 | 0.1991 | - | - |
| 0.8318 | 3250 | 0.1904 | - | - |
| 0.8446 | 3300 | 0.1804 | - | - |
| 0.8574 | 3350 | 0.1944 | - | - |
| 0.8702 | 3400 | 0.1981 | - | - |
| 0.8830 | 3450 | 0.195 | - | - |
| 0.8958 | 3500 | 0.1984 | 0.1357 | 0.6994 |
| 0.9086 | 3550 | 0.1947 | - | - |
| 0.9214 | 3600 | 0.1912 | - | - |
| 0.9342 | 3650 | 0.1898 | - | - |
| 0.9470 | 3700 | 0.1945 | - | - |
| 0.9598 | 3750 | 0.1893 | - | - |
| 0.9726 | 3800 | 0.1919 | - | - |
| 0.9854 | 3850 | 0.1994 | - | - |
| 0.9982 | 3900 | 0.1864 | - | - |
| -1 | -1 | - | - | 0.7000 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.057 kWh
- **Carbon Emitted**: 0.022 kg of CO2
- **Hours Used**: 0.206 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.5.0+cu121
- Accelerate: 1.3.0
- Datasets: 2.20.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |