--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:200000 - loss:MSELoss base_model: nreimers/TinyBERT_L-4_H-312_v2 widget: - source_sentence: At an outdoor event in an Asian-themed area, a crowd congregates as one person in a yellow Chinese dragon costume confronts the camera. sentences: - Boy dressed in blue holds a toy. - the animal is running - Two young asian men are squatting. - source_sentence: A man with a shopping cart is studying the shelves in a supermarket aisle. sentences: - The children are watching TV at home. - Three young boys one is holding a camera and another is holding a green toy all are wearing t-shirt and smiling. - A large group of people are gathered outside of a brick building lit with spotlights. - source_sentence: The door is open. sentences: - There are three men in this picture, two are on motorbikes, one of the men has a large piece of furniture on the back of his bike, the other is about to be handed a piece of paper by a man in a white shirt. - People are playing music. - A girl is using an apple laptop with her headphones in her ears. - source_sentence: A small group of children are standing in a classroom and one of them has a foot in a trashcan, which also has a rope leading out of it. sentences: - Children are swimming at the beach. - Women are celebrating at a bar. - Some men with jerseys are in a bar, watching a soccer match. - source_sentence: A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind. sentences: - There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses. - A girl is sitting - the guy is dead pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - negative_mse co2_eq_emissions: emissions: 3.4513310599379015 energy_consumed: 0.008879118347571923 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.053 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.8020427163636963 name: Pearson Cosine - type: spearman_cosine value: 0.8162119531251948 name: Spearman Cosine - task: type: knowledge-distillation name: Knowledge Distillation dataset: name: Unknown type: unknown metrics: - type: negative_mse value: -50.39951801300049 name: Negative Mse - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.7493791518293895 name: Pearson Cosine - type: spearman_cosine value: 0.752488836028113 name: Spearman Cosine --- # SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2). It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 312 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-new") # Run inference sentences = [ 'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.', 'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.', 'the guy is dead', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 312] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `sts-dev` and `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | sts-dev | sts-test | |:--------------------|:-----------|:-----------| | pearson_cosine | 0.802 | 0.7494 | | **spearman_cosine** | **0.8162** | **0.7525** | #### Knowledge Distillation * Evaluated with [MSEEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator) | Metric | Value | |:-----------------|:-------------| | **negative_mse** | **-50.3995** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 200,000 training samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------| | type | string | list | | details | | | * Samples: | sentence | label | |:---------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | [-0.05779948830604553, 0.7306336760520935, -2.7011518478393555, 1.7303822040557861, 1.379652500152588, ...] | | Children smiling and waving at camera | [-2.939552068710327, 2.887307643890381, 7.378897666931152, 5.352669715881348, -2.55843448638916, ...] | | A boy is jumping on skateboard in the middle of a red bridge. | [2.7139971256256104, 3.2107176780700684, 1.0811409950256348, 6.389298439025879, -0.5123305320739746, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Evaluation Dataset #### Unnamed Dataset * Size: 10,000 evaluation samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------| | type | string | list | | details | | | * Samples: | sentence | label | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------| | Two women are embracing while holding to go packages. | [-5.986438751220703, -2.4999303817749023, 2.2099857330322266, -2.048459529876709, 1.1695001125335693, ...] | | Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | [-1.8326359987258911, 0.5514901876449585, 2.561642646789551, 3.8372995853424072, -3.0104174613952637, ...] | | A man selling donuts to a customer during a world exhibition event held in the city of Angeles | [3.0850987434387207, 3.353701591491699, -0.2763029932975769, -2.3397164344787598, 3.109376907348633, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 0.0001 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine | |:--------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------:|:------------------------:| | 0.032 | 100 | 0.885 | - | - | - | - | | 0.064 | 200 | 0.7985 | - | - | - | - | | 0.096 | 300 | 0.6881 | - | - | - | - | | 0.128 | 400 | 0.6088 | - | - | - | - | | 0.16 | 500 | 0.5608 | 0.6318 | 0.7526 | -63.1827 | - | | 0.192 | 600 | 0.5278 | - | - | - | - | | 0.224 | 700 | 0.5031 | - | - | - | - | | 0.256 | 800 | 0.4854 | - | - | - | - | | 0.288 | 900 | 0.4659 | - | - | - | - | | 0.32 | 1000 | 0.4514 | 0.5661 | 0.7928 | -56.6129 | - | | 0.352 | 1100 | 0.4373 | - | - | - | - | | 0.384 | 1200 | 0.427 | - | - | - | - | | 0.416 | 1300 | 0.4181 | - | - | - | - | | 0.448 | 1400 | 0.41 | - | - | - | - | | 0.48 | 1500 | 0.4053 | 0.5370 | 0.8043 | -53.6980 | - | | 0.512 | 1600 | 0.3934 | - | - | - | - | | 0.544 | 1700 | 0.3905 | - | - | - | - | | 0.576 | 1800 | 0.3848 | - | - | - | - | | 0.608 | 1900 | 0.3787 | - | - | - | - | | 0.64 | 2000 | 0.3734 | 0.5192 | 0.8099 | -51.9208 | - | | 0.672 | 2100 | 0.3715 | - | - | - | - | | 0.704 | 2200 | 0.3694 | - | - | - | - | | 0.736 | 2300 | 0.3665 | - | - | - | - | | 0.768 | 2400 | 0.3615 | - | - | - | - | | 0.8 | 2500 | 0.3576 | 0.5101 | 0.8147 | -51.0102 | - | | 0.832 | 2600 | 0.3547 | - | - | - | - | | 0.864 | 2700 | 0.3542 | - | - | - | - | | 0.896 | 2800 | 0.3521 | - | - | - | - | | 0.928 | 2900 | 0.352 | - | - | - | - | | **0.96** | **3000** | **0.3525** | **0.504** | **0.8162** | **-50.3995** | **-** | | 0.992 | 3100 | 0.3491 | - | - | - | - | | -1 | -1 | - | - | - | - | 0.7525 | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.009 kWh - **Carbon Emitted**: 0.003 kg of CO2 - **Hours Used**: 0.053 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.5.0.dev0 - Transformers: 4.49.0 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.1 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MSELoss ```bibtex @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ```