tomaarsen's picture
tomaarsen HF Staff
Update model card
3f0d79b verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - csr
  - generated_from_trainer
  - dataset_size:99000
  - loss:CSRLoss
  - loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 44.98232094738378
  energy_consumed: 0.11572443915231664
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.296
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Sparse CSR model trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 4
          type: nq_eval_4
        metrics:
          - type: cosine_accuracy@1
            value: 0.332
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.477
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.555
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.651
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.332
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.159
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.111
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06509999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.332
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.477
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.555
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.651
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.48176320654736343
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4288392857142859
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.43687429825818597
            name: Cosine Map@100
          - type: query_active_dims
            value: 4
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9990234375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 4
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9990234375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 8
          type: nq_eval_8
        metrics:
          - type: cosine_accuracy@1
            value: 0.513
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.762
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.822
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.513
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.23333333333333334
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15239999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08220000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.513
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.762
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.822
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6689182882280541
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6197142857142861
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6254200552756788
            name: Cosine Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 16
          type: nq_eval_16
        metrics:
          - type: cosine_accuracy@1
            value: 0.675
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.852
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.889
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.929
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.675
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2839999999999999
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1778
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09290000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.675
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.852
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.889
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.929
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.808847726095864
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7695670634920638
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7727056530256143
            name: Cosine Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 32
          type: nq_eval_32
        metrics:
          - type: cosine_accuracy@1
            value: 0.817
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.926
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.955
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.975
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.817
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.30866666666666664
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19100000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09750000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.817
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.926
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.955
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.975
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9006041699789782
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8762321428571431
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8772002104508256
            name: Cosine Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 64
          type: nq_eval_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.88
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.956
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.973
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.983
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.88
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.31866666666666665
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19460000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09830000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.88
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.956
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.973
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.983
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9358590439656094
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9202527777777781
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9210251316831527
            name: Cosine Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 128
          type: nq_eval_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.924
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.981
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.985
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.992
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.924
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32699999999999996
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19700000000000004
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09920000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.924
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.981
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.985
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.992
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9623782359855955
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9524289682539683
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9527615760504997
            name: Cosine Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 256
          type: nq_eval_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.932
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.987
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.989
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.994
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.932
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32899999999999996
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1978
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09940000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.932
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.987
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.989
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.994
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9677690134872508
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9588666666666668
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.959089060056276
            name: Cosine Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio

Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.6870, 0.1735, 0.1552]])

Evaluation

Metrics

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.332
cosine_accuracy@3 0.477
cosine_accuracy@5 0.555
cosine_accuracy@10 0.651
cosine_precision@1 0.332
cosine_precision@3 0.159
cosine_precision@5 0.111
cosine_precision@10 0.0651
cosine_recall@1 0.332
cosine_recall@3 0.477
cosine_recall@5 0.555
cosine_recall@10 0.651
cosine_ndcg@10 0.4818
cosine_mrr@10 0.4288
cosine_map@100 0.4369
query_active_dims 4.0
query_sparsity_ratio 0.999
corpus_active_dims 4.0
corpus_sparsity_ratio 0.999

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.513
cosine_accuracy@3 0.7
cosine_accuracy@5 0.762
cosine_accuracy@10 0.822
cosine_precision@1 0.513
cosine_precision@3 0.2333
cosine_precision@5 0.1524
cosine_precision@10 0.0822
cosine_recall@1 0.513
cosine_recall@3 0.7
cosine_recall@5 0.762
cosine_recall@10 0.822
cosine_ndcg@10 0.6689
cosine_mrr@10 0.6197
cosine_map@100 0.6254
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.675
cosine_accuracy@3 0.852
cosine_accuracy@5 0.889
cosine_accuracy@10 0.929
cosine_precision@1 0.675
cosine_precision@3 0.284
cosine_precision@5 0.1778
cosine_precision@10 0.0929
cosine_recall@1 0.675
cosine_recall@3 0.852
cosine_recall@5 0.889
cosine_recall@10 0.929
cosine_ndcg@10 0.8088
cosine_mrr@10 0.7696
cosine_map@100 0.7727
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.817
cosine_accuracy@3 0.926
cosine_accuracy@5 0.955
cosine_accuracy@10 0.975
cosine_precision@1 0.817
cosine_precision@3 0.3087
cosine_precision@5 0.191
cosine_precision@10 0.0975
cosine_recall@1 0.817
cosine_recall@3 0.926
cosine_recall@5 0.955
cosine_recall@10 0.975
cosine_ndcg@10 0.9006
cosine_mrr@10 0.8762
cosine_map@100 0.8772
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.88
cosine_accuracy@3 0.956
cosine_accuracy@5 0.973
cosine_accuracy@10 0.983
cosine_precision@1 0.88
cosine_precision@3 0.3187
cosine_precision@5 0.1946
cosine_precision@10 0.0983
cosine_recall@1 0.88
cosine_recall@3 0.956
cosine_recall@5 0.973
cosine_recall@10 0.983
cosine_ndcg@10 0.9359
cosine_mrr@10 0.9203
cosine_map@100 0.921
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.924
cosine_accuracy@3 0.981
cosine_accuracy@5 0.985
cosine_accuracy@10 0.992
cosine_precision@1 0.924
cosine_precision@3 0.327
cosine_precision@5 0.197
cosine_precision@10 0.0992
cosine_recall@1 0.924
cosine_recall@3 0.981
cosine_recall@5 0.985
cosine_recall@10 0.992
cosine_ndcg@10 0.9624
cosine_mrr@10 0.9524
cosine_map@100 0.9528
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.932
cosine_accuracy@3 0.987
cosine_accuracy@5 0.989
cosine_accuracy@10 0.994
cosine_precision@1 0.932
cosine_precision@3 0.329
cosine_precision@5 0.1978
cosine_precision@10 0.0994
cosine_recall@1 0.932
cosine_recall@3 0.987
cosine_recall@5 0.989
cosine_recall@10 0.994
cosine_ndcg@10 0.9678
cosine_mrr@10 0.9589
cosine_map@100 0.9591
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.1,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.1,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss nq_eval_4_cosine_ndcg@10 nq_eval_8_cosine_ndcg@10 nq_eval_16_cosine_ndcg@10 nq_eval_32_cosine_ndcg@10 nq_eval_64_cosine_ndcg@10 nq_eval_128_cosine_ndcg@10 nq_eval_256_cosine_ndcg@10
-1 -1 - - 0.2797 0.4593 0.7019 0.8753 0.9323 0.9620 0.9714
0.0646 100 0.3149 - - - - - - - -
0.1293 200 0.2765 - - - - - - - -
0.1939 300 0.2651 0.2500 0.3976 0.5760 0.7712 0.8849 0.9314 0.9551 0.9650
0.2586 400 0.2572 - - - - - - - -
0.3232 500 0.2517 - - - - - - - -
0.3878 600 0.2484 0.2364 0.4423 0.6333 0.7956 0.8963 0.9350 0.9570 0.9670
0.4525 700 0.2454 - - - - - - - -
0.5171 800 0.2431 - - - - - - - -
0.5818 900 0.2411 0.2300 0.4755 0.6660 0.7986 0.9035 0.9370 0.9582 0.9695
0.6464 1000 0.2397 - - - - - - - -
0.7111 1100 0.2378 - - - - - - - -
0.7757 1200 0.2375 0.2268 0.4763 0.6699 0.8040 0.8987 0.9355 0.9592 0.9673
0.8403 1300 0.2371 - - - - - - - -
0.9050 1400 0.2358 - - - - - - - -
0.9696 1500 0.2359 0.2256 0.4813 0.6709 0.8088 0.9003 0.9348 0.9622 0.9687
-1 -1 - - 0.4818 0.6689 0.8088 0.9006 0.9359 0.9624 0.9678

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.116 kWh
  • Carbon Emitted: 0.045 kg of CO2
  • Hours Used: 0.296 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}