File size: 48,707 Bytes
d00983c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:99000
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia
continue to take somewhat differing stances on regional conflicts such the Yemeni
Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement,
which has fought against Saudi-backed forces, and the Syrian Civil War, where
the UAE has disagreed with Saudi support for Islamist movements.[4]
- text: Economy of New Zealand New Zealand's diverse market economy has a sizable
service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale
manufacturing industries include aluminium production, food processing, metal
fabrication, wood and paper products. Mining, manufacturing, electricity, gas,
water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary
sector continues to dominate New Zealand's exports, despite accounting for 6.5%
of GDP in 2013.[17]
- text: who was the first president of indian science congress meeting held in kolkata
in 1914
- text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as
a single after a fourteen-year breakup. It was also the first song written by
bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was
played live for the first time during their Hell Freezes Over tour in 1994. It
returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at
No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream
Rock Tracks chart. The song was not played live by the Eagles after the "Hell
Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S.
- text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
who is considered by Christians to be one of the first Gentiles to convert to
the faith, as related in Acts of the Apostles.'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 39.03404179469692
energy_consumed: 0.1004215100377588
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.246
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 4
type: nq_eval_4
metrics:
- type: cosine_accuracy@1
value: 0.333
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.51
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.608
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.701
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.333
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.17
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1216
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0701
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.51
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.608
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.701
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5048911324016669
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.44326626984126943
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.45271073834573333
name: Cosine Map@100
- type: query_active_dims
value: 4.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9990234375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 4.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9990234375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 8
type: nq_eval_8
metrics:
- type: cosine_accuracy@1
value: 0.471
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.675
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.75
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.825
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.471
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.225
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0825
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.471
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.675
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.75
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.825
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6441336669789526
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5863865079365083
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5935240561774322
name: Cosine Map@100
- type: query_active_dims
value: 8.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.998046875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 8.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.998046875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 16
type: nq_eval_16
metrics:
- type: cosine_accuracy@1
value: 0.618
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.839
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.888
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.618
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1678
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08880000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.618
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.839
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.888
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7584976627273415
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7165746031746036
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7213877485505877
name: Cosine Map@100
- type: query_active_dims
value: 16.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.99609375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 16.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99609375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 32
type: nq_eval_32
metrics:
- type: cosine_accuracy@1
value: 0.729
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.848
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.881
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.916
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.729
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2826666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1762
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09160000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.729
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.848
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.881
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.916
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8242272725827696
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7946277777777779
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7980770968534903
name: Cosine Map@100
- type: query_active_dims
value: 32.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9921875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 32.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9921875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 64
type: nq_eval_64
metrics:
- type: cosine_accuracy@1
value: 0.783
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.883
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.909
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.94
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.783
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29433333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18180000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09400000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.783
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.883
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.909
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.94
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8633645356650496
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8386107142857145
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8412127714611879
name: Cosine Map@100
- type: query_active_dims
value: 64.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.984375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 64.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.984375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 128
type: nq_eval_128
metrics:
- type: cosine_accuracy@1
value: 0.858
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.942
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.953
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.966
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.858
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31399999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19060000000000005
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0966
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.858
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.942
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.953
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.966
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9175695694881496
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9015206349206352
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9028827893432363
name: Cosine Map@100
- type: query_active_dims
value: 128.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.96875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 128.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.96875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 256
type: nq_eval_256
metrics:
- type: cosine_accuracy@1
value: 0.905
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.972
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.982
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.987
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.905
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32399999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19640000000000005
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09870000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.905
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.972
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.982
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.987
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9511220239850359
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9390623015873019
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9396249937318298
name: Cosine Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
---
# Sparse CSR model trained on Natural Questions
This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** CSR Sparse Encoder
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions)
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-5-gamma-0.1-detach-2")
# Run inference
queries = [
"who is cornelius in the book of acts",
]
documents = [
'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
"Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.7512, 0.2310, 0.2134]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Dataset: `nq_eval_4`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 4
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.333 |
| cosine_accuracy@3 | 0.51 |
| cosine_accuracy@5 | 0.608 |
| cosine_accuracy@10 | 0.701 |
| cosine_precision@1 | 0.333 |
| cosine_precision@3 | 0.17 |
| cosine_precision@5 | 0.1216 |
| cosine_precision@10 | 0.0701 |
| cosine_recall@1 | 0.333 |
| cosine_recall@3 | 0.51 |
| cosine_recall@5 | 0.608 |
| cosine_recall@10 | 0.701 |
| **cosine_ndcg@10** | **0.5049** |
| cosine_mrr@10 | 0.4433 |
| cosine_map@100 | 0.4527 |
| query_active_dims | 4.0 |
| query_sparsity_ratio | 0.999 |
| corpus_active_dims | 4.0 |
| corpus_sparsity_ratio | 0.999 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_8`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 8
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.471 |
| cosine_accuracy@3 | 0.675 |
| cosine_accuracy@5 | 0.75 |
| cosine_accuracy@10 | 0.825 |
| cosine_precision@1 | 0.471 |
| cosine_precision@3 | 0.225 |
| cosine_precision@5 | 0.15 |
| cosine_precision@10 | 0.0825 |
| cosine_recall@1 | 0.471 |
| cosine_recall@3 | 0.675 |
| cosine_recall@5 | 0.75 |
| cosine_recall@10 | 0.825 |
| **cosine_ndcg@10** | **0.6441** |
| cosine_mrr@10 | 0.5864 |
| cosine_map@100 | 0.5935 |
| query_active_dims | 8.0 |
| query_sparsity_ratio | 0.998 |
| corpus_active_dims | 8.0 |
| corpus_sparsity_ratio | 0.998 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_16`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 16
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.618 |
| cosine_accuracy@3 | 0.8 |
| cosine_accuracy@5 | 0.839 |
| cosine_accuracy@10 | 0.888 |
| cosine_precision@1 | 0.618 |
| cosine_precision@3 | 0.2667 |
| cosine_precision@5 | 0.1678 |
| cosine_precision@10 | 0.0888 |
| cosine_recall@1 | 0.618 |
| cosine_recall@3 | 0.8 |
| cosine_recall@5 | 0.839 |
| cosine_recall@10 | 0.888 |
| **cosine_ndcg@10** | **0.7585** |
| cosine_mrr@10 | 0.7166 |
| cosine_map@100 | 0.7214 |
| query_active_dims | 16.0 |
| query_sparsity_ratio | 0.9961 |
| corpus_active_dims | 16.0 |
| corpus_sparsity_ratio | 0.9961 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_32`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 32
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.729 |
| cosine_accuracy@3 | 0.848 |
| cosine_accuracy@5 | 0.881 |
| cosine_accuracy@10 | 0.916 |
| cosine_precision@1 | 0.729 |
| cosine_precision@3 | 0.2827 |
| cosine_precision@5 | 0.1762 |
| cosine_precision@10 | 0.0916 |
| cosine_recall@1 | 0.729 |
| cosine_recall@3 | 0.848 |
| cosine_recall@5 | 0.881 |
| cosine_recall@10 | 0.916 |
| **cosine_ndcg@10** | **0.8242** |
| cosine_mrr@10 | 0.7946 |
| cosine_map@100 | 0.7981 |
| query_active_dims | 32.0 |
| query_sparsity_ratio | 0.9922 |
| corpus_active_dims | 32.0 |
| corpus_sparsity_ratio | 0.9922 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_64`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 64
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.783 |
| cosine_accuracy@3 | 0.883 |
| cosine_accuracy@5 | 0.909 |
| cosine_accuracy@10 | 0.94 |
| cosine_precision@1 | 0.783 |
| cosine_precision@3 | 0.2943 |
| cosine_precision@5 | 0.1818 |
| cosine_precision@10 | 0.094 |
| cosine_recall@1 | 0.783 |
| cosine_recall@3 | 0.883 |
| cosine_recall@5 | 0.909 |
| cosine_recall@10 | 0.94 |
| **cosine_ndcg@10** | **0.8634** |
| cosine_mrr@10 | 0.8386 |
| cosine_map@100 | 0.8412 |
| query_active_dims | 64.0 |
| query_sparsity_ratio | 0.9844 |
| corpus_active_dims | 64.0 |
| corpus_sparsity_ratio | 0.9844 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_128`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 128
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.858 |
| cosine_accuracy@3 | 0.942 |
| cosine_accuracy@5 | 0.953 |
| cosine_accuracy@10 | 0.966 |
| cosine_precision@1 | 0.858 |
| cosine_precision@3 | 0.314 |
| cosine_precision@5 | 0.1906 |
| cosine_precision@10 | 0.0966 |
| cosine_recall@1 | 0.858 |
| cosine_recall@3 | 0.942 |
| cosine_recall@5 | 0.953 |
| cosine_recall@10 | 0.966 |
| **cosine_ndcg@10** | **0.9176** |
| cosine_mrr@10 | 0.9015 |
| cosine_map@100 | 0.9029 |
| query_active_dims | 128.0 |
| query_sparsity_ratio | 0.9688 |
| corpus_active_dims | 128.0 |
| corpus_sparsity_ratio | 0.9688 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_256`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 256
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.905 |
| cosine_accuracy@3 | 0.972 |
| cosine_accuracy@5 | 0.982 |
| cosine_accuracy@10 | 0.987 |
| cosine_precision@1 | 0.905 |
| cosine_precision@3 | 0.324 |
| cosine_precision@5 | 0.1964 |
| cosine_precision@10 | 0.0987 |
| cosine_recall@1 | 0.905 |
| cosine_recall@3 | 0.972 |
| cosine_recall@5 | 0.982 |
| cosine_recall@10 | 0.987 |
| **cosine_ndcg@10** | **0.9511** |
| cosine_mrr@10 | 0.9391 |
| cosine_map@100 | 0.9396 |
| query_active_dims | 256.0 |
| query_sparsity_ratio | 0.9375 |
| corpus_active_dims | 256.0 |
| corpus_sparsity_ratio | 0.9375 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |
* Samples:
| query | answer |
|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> |
| <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
| <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> |
* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 0.1,
"loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"
}
```
### Evaluation Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| query | answer |
|:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
| <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> |
| <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> |
* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 0.1,
"loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 4e-05
- `num_train_epochs`: 1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 4e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | nq_eval_4_cosine_ndcg@10 | nq_eval_8_cosine_ndcg@10 | nq_eval_16_cosine_ndcg@10 | nq_eval_32_cosine_ndcg@10 | nq_eval_64_cosine_ndcg@10 | nq_eval_128_cosine_ndcg@10 | nq_eval_256_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:------------------------:|:------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:--------------------------:|:--------------------------:|
| -1 | -1 | - | - | 0.2820 | 0.4878 | 0.6965 | 0.8627 | 0.9319 | 0.9578 | 0.9699 |
| 0.0646 | 100 | 0.5473 | - | - | - | - | - | - | - | - |
| 0.1293 | 200 | 0.4992 | - | - | - | - | - | - | - | - |
| 0.1939 | 300 | 0.4823 | 0.4529 | 0.4274 | 0.6028 | 0.7463 | 0.8377 | 0.8877 | 0.9224 | 0.9512 |
| 0.2586 | 400 | 0.4725 | - | - | - | - | - | - | - | - |
| 0.3232 | 500 | 0.4655 | - | - | - | - | - | - | - | - |
| 0.3878 | 600 | 0.4597 | 0.4344 | 0.4642 | 0.6281 | 0.7556 | 0.8281 | 0.8697 | 0.9163 | 0.9485 |
| 0.4525 | 700 | 0.4563 | - | - | - | - | - | - | - | - |
| 0.5171 | 800 | 0.4522 | - | - | - | - | - | - | - | - |
| 0.5818 | 900 | 0.4496 | 0.4256 | 0.4908 | 0.6406 | 0.7527 | 0.8232 | 0.8653 | 0.9146 | 0.9467 |
| 0.6464 | 1000 | 0.4478 | - | - | - | - | - | - | - | - |
| 0.7111 | 1100 | 0.4458 | - | - | - | - | - | - | - | - |
| 0.7757 | 1200 | 0.4448 | 0.4210 | 0.5008 | 0.6424 | 0.7659 | 0.8186 | 0.8649 | 0.9151 | 0.9502 |
| 0.8403 | 1300 | 0.4436 | - | - | - | - | - | - | - | - |
| 0.9050 | 1400 | 0.4425 | - | - | - | - | - | - | - | - |
| 0.9696 | 1500 | 0.4427 | 0.4193 | 0.5064 | 0.6434 | 0.7584 | 0.8229 | 0.8646 | 0.9178 | 0.9517 |
| -1 | -1 | - | - | 0.5049 | 0.6441 | 0.7585 | 0.8242 | 0.8634 | 0.9176 | 0.9511 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.100 kWh
- **Carbon Emitted**: 0.039 kg of CO2
- **Hours Used**: 0.246 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CSRLoss
```bibtex
@misc{wen2025matryoshkarevisitingsparsecoding,
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
year={2025},
eprint={2503.01776},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.01776},
}
```
#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |