---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:99000
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia
continue to take somewhat differing stances on regional conflicts such the Yemeni
Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement,
which has fought against Saudi-backed forces, and the Syrian Civil War, where
the UAE has disagreed with Saudi support for Islamist movements.[4]
- text: Economy of New Zealand New Zealand's diverse market economy has a sizable
service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale
manufacturing industries include aluminium production, food processing, metal
fabrication, wood and paper products. Mining, manufacturing, electricity, gas,
water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary
sector continues to dominate New Zealand's exports, despite accounting for 6.5%
of GDP in 2013.[17]
- text: who was the first president of indian science congress meeting held in kolkata
in 1914
- text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as
a single after a fourteen-year breakup. It was also the first song written by
bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was
played live for the first time during their Hell Freezes Over tour in 1994. It
returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at
No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream
Rock Tracks chart. The song was not played live by the Eagles after the "Hell
Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S.
- text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
who is considered by Christians to be one of the first Gentiles to convert to
the faith, as related in Acts of the Apostles.'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 39.03404179469692
energy_consumed: 0.1004215100377588
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.246
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 4
type: nq_eval_4
metrics:
- type: cosine_accuracy@1
value: 0.333
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.51
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.608
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.701
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.333
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.17
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1216
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0701
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.51
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.608
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.701
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5048911324016669
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.44326626984126943
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.45271073834573333
name: Cosine Map@100
- type: query_active_dims
value: 4.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9990234375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 4.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9990234375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 8
type: nq_eval_8
metrics:
- type: cosine_accuracy@1
value: 0.471
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.675
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.75
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.825
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.471
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.225
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0825
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.471
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.675
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.75
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.825
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6441336669789526
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5863865079365083
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5935240561774322
name: Cosine Map@100
- type: query_active_dims
value: 8.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.998046875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 8.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.998046875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 16
type: nq_eval_16
metrics:
- type: cosine_accuracy@1
value: 0.618
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.839
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.888
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.618
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1678
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08880000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.618
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.839
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.888
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7584976627273415
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7165746031746036
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7213877485505877
name: Cosine Map@100
- type: query_active_dims
value: 16.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.99609375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 16.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99609375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 32
type: nq_eval_32
metrics:
- type: cosine_accuracy@1
value: 0.729
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.848
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.881
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.916
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.729
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2826666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1762
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09160000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.729
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.848
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.881
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.916
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8242272725827696
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7946277777777779
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7980770968534903
name: Cosine Map@100
- type: query_active_dims
value: 32.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9921875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 32.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9921875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 64
type: nq_eval_64
metrics:
- type: cosine_accuracy@1
value: 0.783
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.883
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.909
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.94
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.783
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29433333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18180000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09400000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.783
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.883
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.909
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.94
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8633645356650496
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8386107142857145
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8412127714611879
name: Cosine Map@100
- type: query_active_dims
value: 64.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.984375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 64.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.984375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 128
type: nq_eval_128
metrics:
- type: cosine_accuracy@1
value: 0.858
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.942
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.953
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.966
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.858
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31399999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19060000000000005
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0966
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.858
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.942
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.953
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.966
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9175695694881496
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9015206349206352
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9028827893432363
name: Cosine Map@100
- type: query_active_dims
value: 128.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.96875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 128.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.96875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 256
type: nq_eval_256
metrics:
- type: cosine_accuracy@1
value: 0.905
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.972
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.982
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.987
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.905
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32399999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19640000000000005
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09870000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.905
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.972
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.982
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.987
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9511220239850359
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9390623015873019
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9396249937318298
name: Cosine Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
---
# Sparse CSR model trained on Natural Questions
This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** CSR Sparse Encoder
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions)
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-5-gamma-0.1-detach-2")
# Run inference
queries = [
"who is cornelius in the book of acts",
]
documents = [
'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
"Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.7512, 0.2310, 0.2134]])
```
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Dataset: `nq_eval_4`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 4
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.333 |
| cosine_accuracy@3 | 0.51 |
| cosine_accuracy@5 | 0.608 |
| cosine_accuracy@10 | 0.701 |
| cosine_precision@1 | 0.333 |
| cosine_precision@3 | 0.17 |
| cosine_precision@5 | 0.1216 |
| cosine_precision@10 | 0.0701 |
| cosine_recall@1 | 0.333 |
| cosine_recall@3 | 0.51 |
| cosine_recall@5 | 0.608 |
| cosine_recall@10 | 0.701 |
| **cosine_ndcg@10** | **0.5049** |
| cosine_mrr@10 | 0.4433 |
| cosine_map@100 | 0.4527 |
| query_active_dims | 4.0 |
| query_sparsity_ratio | 0.999 |
| corpus_active_dims | 4.0 |
| corpus_sparsity_ratio | 0.999 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_8`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 8
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.471 |
| cosine_accuracy@3 | 0.675 |
| cosine_accuracy@5 | 0.75 |
| cosine_accuracy@10 | 0.825 |
| cosine_precision@1 | 0.471 |
| cosine_precision@3 | 0.225 |
| cosine_precision@5 | 0.15 |
| cosine_precision@10 | 0.0825 |
| cosine_recall@1 | 0.471 |
| cosine_recall@3 | 0.675 |
| cosine_recall@5 | 0.75 |
| cosine_recall@10 | 0.825 |
| **cosine_ndcg@10** | **0.6441** |
| cosine_mrr@10 | 0.5864 |
| cosine_map@100 | 0.5935 |
| query_active_dims | 8.0 |
| query_sparsity_ratio | 0.998 |
| corpus_active_dims | 8.0 |
| corpus_sparsity_ratio | 0.998 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_16`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 16
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.618 |
| cosine_accuracy@3 | 0.8 |
| cosine_accuracy@5 | 0.839 |
| cosine_accuracy@10 | 0.888 |
| cosine_precision@1 | 0.618 |
| cosine_precision@3 | 0.2667 |
| cosine_precision@5 | 0.1678 |
| cosine_precision@10 | 0.0888 |
| cosine_recall@1 | 0.618 |
| cosine_recall@3 | 0.8 |
| cosine_recall@5 | 0.839 |
| cosine_recall@10 | 0.888 |
| **cosine_ndcg@10** | **0.7585** |
| cosine_mrr@10 | 0.7166 |
| cosine_map@100 | 0.7214 |
| query_active_dims | 16.0 |
| query_sparsity_ratio | 0.9961 |
| corpus_active_dims | 16.0 |
| corpus_sparsity_ratio | 0.9961 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_32`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 32
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.729 |
| cosine_accuracy@3 | 0.848 |
| cosine_accuracy@5 | 0.881 |
| cosine_accuracy@10 | 0.916 |
| cosine_precision@1 | 0.729 |
| cosine_precision@3 | 0.2827 |
| cosine_precision@5 | 0.1762 |
| cosine_precision@10 | 0.0916 |
| cosine_recall@1 | 0.729 |
| cosine_recall@3 | 0.848 |
| cosine_recall@5 | 0.881 |
| cosine_recall@10 | 0.916 |
| **cosine_ndcg@10** | **0.8242** |
| cosine_mrr@10 | 0.7946 |
| cosine_map@100 | 0.7981 |
| query_active_dims | 32.0 |
| query_sparsity_ratio | 0.9922 |
| corpus_active_dims | 32.0 |
| corpus_sparsity_ratio | 0.9922 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_64`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 64
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.783 |
| cosine_accuracy@3 | 0.883 |
| cosine_accuracy@5 | 0.909 |
| cosine_accuracy@10 | 0.94 |
| cosine_precision@1 | 0.783 |
| cosine_precision@3 | 0.2943 |
| cosine_precision@5 | 0.1818 |
| cosine_precision@10 | 0.094 |
| cosine_recall@1 | 0.783 |
| cosine_recall@3 | 0.883 |
| cosine_recall@5 | 0.909 |
| cosine_recall@10 | 0.94 |
| **cosine_ndcg@10** | **0.8634** |
| cosine_mrr@10 | 0.8386 |
| cosine_map@100 | 0.8412 |
| query_active_dims | 64.0 |
| query_sparsity_ratio | 0.9844 |
| corpus_active_dims | 64.0 |
| corpus_sparsity_ratio | 0.9844 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_128`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 128
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.858 |
| cosine_accuracy@3 | 0.942 |
| cosine_accuracy@5 | 0.953 |
| cosine_accuracy@10 | 0.966 |
| cosine_precision@1 | 0.858 |
| cosine_precision@3 | 0.314 |
| cosine_precision@5 | 0.1906 |
| cosine_precision@10 | 0.0966 |
| cosine_recall@1 | 0.858 |
| cosine_recall@3 | 0.942 |
| cosine_recall@5 | 0.953 |
| cosine_recall@10 | 0.966 |
| **cosine_ndcg@10** | **0.9176** |
| cosine_mrr@10 | 0.9015 |
| cosine_map@100 | 0.9029 |
| query_active_dims | 128.0 |
| query_sparsity_ratio | 0.9688 |
| corpus_active_dims | 128.0 |
| corpus_sparsity_ratio | 0.9688 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_256`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 256
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.905 |
| cosine_accuracy@3 | 0.972 |
| cosine_accuracy@5 | 0.982 |
| cosine_accuracy@10 | 0.987 |
| cosine_precision@1 | 0.905 |
| cosine_precision@3 | 0.324 |
| cosine_precision@5 | 0.1964 |
| cosine_precision@10 | 0.0987 |
| cosine_recall@1 | 0.905 |
| cosine_recall@3 | 0.972 |
| cosine_recall@5 | 0.982 |
| cosine_recall@10 | 0.987 |
| **cosine_ndcg@10** | **0.9511** |
| cosine_mrr@10 | 0.9391 |
| cosine_map@100 | 0.9396 |
| query_active_dims | 256.0 |
| query_sparsity_ratio | 0.9375 |
| corpus_active_dims | 256.0 |
| corpus_sparsity_ratio | 0.9375 |
## Training Details
### Training Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: query
and answer
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details |
who played the father in papa don't preach
| Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
|
| where was the location of the battle of hastings
| Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
|
| how many puppies can a dog give birth to
| Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
|
* Loss: [CSRLoss
](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 0.1,
"loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"
}
```
### Evaluation Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: query
and answer
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | where is the tiber river located in italy
| Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
|
| what kind of car does jay gatsby drive
| Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
|
| who sings if i can dream about you
| I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
|
* Loss: [CSRLoss
](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 0.1,
"loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 4e-05
- `num_train_epochs`: 1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters