File size: 48,843 Bytes
baa6396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:99000
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia
    continue to take somewhat differing stances on regional conflicts such the Yemeni
    Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement,
    which has fought against Saudi-backed forces, and the Syrian Civil War, where
    the UAE has disagreed with Saudi support for Islamist movements.[4]
- text: Economy of New Zealand New Zealand's diverse market economy has a sizable
    service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale
    manufacturing industries include aluminium production, food processing, metal
    fabrication, wood and paper products. Mining, manufacturing, electricity, gas,
    water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary
    sector continues to dominate New Zealand's exports, despite accounting for 6.5%
    of GDP in 2013.[17]
- text: who was the first president of indian science congress meeting held in kolkata
    in 1914
- text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as
    a single after a fourteen-year breakup. It was also the first song written by
    bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was
    played live for the first time during their Hell Freezes Over tour in 1994. It
    returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at
    No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream
    Rock Tracks chart. The song was not played live by the Eagles after the "Hell

    Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S.
- text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion

    who is considered by Christians to be one of the first Gentiles to convert to

    the faith, as related in Acts of the Apostles.'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 42.81821457704325
  energy_consumed: 0.11015691860871116
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.274
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: nq eval 4
      type: nq_eval_4
    metrics:
    - type: cosine_accuracy@1
      value: 0.341
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.53
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.616
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.71
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.341
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1766666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12319999999999999
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.071
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.341
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.53
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.616
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.71
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5177559532868556
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4569571428571428
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.46808238304226085
      name: Cosine Map@100
    - type: query_active_dims
      value: 4.0
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9990234375
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 4.0
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9990234375
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: nq eval 8
      type: nq_eval_8
    metrics:
    - type: cosine_accuracy@1
      value: 0.479
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.683
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.743
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.827
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.479
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.22766666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14859999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08270000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.479
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.683
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.743
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.827
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6514732993360963
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5954253968253969
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.602459158736598
      name: Cosine Map@100
    - type: query_active_dims
      value: 8.0
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.998046875
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 8.0
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.998046875
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: nq eval 16
      type: nq_eval_16
    metrics:
    - type: cosine_accuracy@1
      value: 0.61
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.792
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.843
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.61
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.264
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16860000000000003
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.61
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.792
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.843
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7573375805688765
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7114896825396828
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7159603693257915
      name: Cosine Map@100
    - type: query_active_dims
      value: 16.0
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.99609375
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 16.0
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.99609375
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: nq eval 32
      type: nq_eval_32
    metrics:
    - type: cosine_accuracy@1
      value: 0.739
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.871
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.899
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.936
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.739
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2903333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17980000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0936
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.739
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.871
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.899
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.936
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8407099394827843
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8098075396825399
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8124255549328265
      name: Cosine Map@100
    - type: query_active_dims
      value: 32.0
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9921875
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 32.0
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9921875
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: nq eval 64
      type: nq_eval_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.775
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.895
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.925
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.951
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.775
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2983333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18500000000000003
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0951
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.775
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.895
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.925
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.951
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8672657281787072
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8399420634920639
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8417827624389276
      name: Cosine Map@100
    - type: query_active_dims
      value: 63.992000579833984
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.984376952983439
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 64.0
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.984375
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: nq eval 128
      type: nq_eval_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.797
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.901
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.933
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.951
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.797
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.30033333333333334
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18660000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0951
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.797
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.901
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.933
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.951
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8780719613731008
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8541857142857148
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8561013158199787
      name: Cosine Map@100
    - type: query_active_dims
      value: 119.21700286865234
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9708942864090204
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 119.6520004272461
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9707880858331919
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: nq eval 256
      type: nq_eval_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.8
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.901
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.933
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.951
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.30033333333333334
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18660000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0951
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.901
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.933
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.951
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8788975201919854
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8553369047619053
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8573055135070745
      name: Cosine Map@100
    - type: query_active_dims
      value: 133.42999267578125
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9674243181943893
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 129.16900634765625
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9684645980596542
      name: Corpus Sparsity Ratio
---


# Sparse CSR model trained on Natural Questions

This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space  with 256 maximum active dimensions  and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** CSR Sparse Encoder
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions)
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```

SparseEncoder(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SparseEncoder



# Download from the 🤗 Hub

model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-5-gamma-1-detach-2")

# Run inference

queries = [

    "who is cornelius in the book of acts",

]

documents = [

    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',

    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",

    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',

]

query_embeddings = model.encode_query(queries)

document_embeddings = model.encode_document(documents)

print(query_embeddings.shape, document_embeddings.shape)

# [1, 4096] [3, 4096]



# Get the similarity scores for the embeddings

similarities = model.similarity(query_embeddings, document_embeddings)

print(similarities)

# tensor([[0.8907, 0.0410, 0.0237]])

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Dataset: `nq_eval_4`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
  ```json

  {

      "max_active_dims": 4

  }

  ```

| Metric                | Value      |
|:----------------------|:-----------|
| cosine_accuracy@1     | 0.341      |

| cosine_accuracy@3     | 0.53       |
| cosine_accuracy@5     | 0.616      |

| cosine_accuracy@10    | 0.71       |
| cosine_precision@1    | 0.341      |

| cosine_precision@3    | 0.1767     |
| cosine_precision@5    | 0.1232     |

| cosine_precision@10   | 0.071      |
| cosine_recall@1       | 0.341      |

| cosine_recall@3       | 0.53       |
| cosine_recall@5       | 0.616      |

| cosine_recall@10      | 0.71       |
| **cosine_ndcg@10**    | **0.5178** |

| cosine_mrr@10         | 0.457      |

| cosine_map@100        | 0.4681     |

| query_active_dims     | 4.0        |

| query_sparsity_ratio  | 0.999      |

| corpus_active_dims    | 4.0        |

| corpus_sparsity_ratio | 0.999      |



#### Sparse Information Retrieval



* Dataset: `nq_eval_8`

* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:

  ```json

  {

      "max_active_dims": 8

  }

  ```



| Metric                | Value      |

|:----------------------|:-----------|

| cosine_accuracy@1     | 0.479      |

| cosine_accuracy@3     | 0.683      |

| cosine_accuracy@5     | 0.743      |

| cosine_accuracy@10    | 0.827      |

| cosine_precision@1    | 0.479      |

| cosine_precision@3    | 0.2277     |

| cosine_precision@5    | 0.1486     |

| cosine_precision@10   | 0.0827     |

| cosine_recall@1       | 0.479      |

| cosine_recall@3       | 0.683      |

| cosine_recall@5       | 0.743      |

| cosine_recall@10      | 0.827      |

| **cosine_ndcg@10**    | **0.6515** |
| cosine_mrr@10         | 0.5954     |

| cosine_map@100        | 0.6025     |
| query_active_dims     | 8.0        |
| query_sparsity_ratio  | 0.998      |
| corpus_active_dims    | 8.0        |
| corpus_sparsity_ratio | 0.998      |

#### Sparse Information Retrieval

* Dataset: `nq_eval_16`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
  ```json

  {

      "max_active_dims": 16

  }

  ```

| Metric                | Value      |
|:----------------------|:-----------|
| cosine_accuracy@1     | 0.61       |

| cosine_accuracy@3     | 0.792      |
| cosine_accuracy@5     | 0.843      |

| cosine_accuracy@10    | 0.9        |
| cosine_precision@1    | 0.61       |

| cosine_precision@3    | 0.264      |
| cosine_precision@5    | 0.1686     |

| cosine_precision@10   | 0.09       |
| cosine_recall@1       | 0.61       |

| cosine_recall@3       | 0.792      |
| cosine_recall@5       | 0.843      |

| cosine_recall@10      | 0.9        |
| **cosine_ndcg@10**    | **0.7573** |

| cosine_mrr@10         | 0.7115     |

| cosine_map@100        | 0.716      |

| query_active_dims     | 16.0       |

| query_sparsity_ratio  | 0.9961     |

| corpus_active_dims    | 16.0       |

| corpus_sparsity_ratio | 0.9961     |



#### Sparse Information Retrieval



* Dataset: `nq_eval_32`

* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:

  ```json

  {

      "max_active_dims": 32

  }

  ```



| Metric                | Value      |

|:----------------------|:-----------|

| cosine_accuracy@1     | 0.739      |

| cosine_accuracy@3     | 0.871      |

| cosine_accuracy@5     | 0.899      |

| cosine_accuracy@10    | 0.936      |

| cosine_precision@1    | 0.739      |

| cosine_precision@3    | 0.2903     |

| cosine_precision@5    | 0.1798     |

| cosine_precision@10   | 0.0936     |

| cosine_recall@1       | 0.739      |

| cosine_recall@3       | 0.871      |

| cosine_recall@5       | 0.899      |

| cosine_recall@10      | 0.936      |

| **cosine_ndcg@10**    | **0.8407** |
| cosine_mrr@10         | 0.8098     |

| cosine_map@100        | 0.8124     |
| query_active_dims     | 32.0       |
| query_sparsity_ratio  | 0.9922     |
| corpus_active_dims    | 32.0       |
| corpus_sparsity_ratio | 0.9922     |

#### Sparse Information Retrieval

* Dataset: `nq_eval_64`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
  ```json

  {

      "max_active_dims": 64

  }

  ```

| Metric                | Value      |
|:----------------------|:-----------|
| cosine_accuracy@1     | 0.775      |

| cosine_accuracy@3     | 0.895      |
| cosine_accuracy@5     | 0.925      |

| cosine_accuracy@10    | 0.951      |
| cosine_precision@1    | 0.775      |

| cosine_precision@3    | 0.2983     |
| cosine_precision@5    | 0.185      |

| cosine_precision@10   | 0.0951     |
| cosine_recall@1       | 0.775      |

| cosine_recall@3       | 0.895      |
| cosine_recall@5       | 0.925      |

| cosine_recall@10      | 0.951      |
| **cosine_ndcg@10**    | **0.8673** |

| cosine_mrr@10         | 0.8399     |

| cosine_map@100        | 0.8418     |

| query_active_dims     | 63.992     |

| query_sparsity_ratio  | 0.9844     |

| corpus_active_dims    | 64.0       |

| corpus_sparsity_ratio | 0.9844     |



#### Sparse Information Retrieval



* Dataset: `nq_eval_128`

* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:

  ```json

  {

      "max_active_dims": 128

  }

  ```



| Metric                | Value      |

|:----------------------|:-----------|

| cosine_accuracy@1     | 0.797      |

| cosine_accuracy@3     | 0.901      |

| cosine_accuracy@5     | 0.933      |

| cosine_accuracy@10    | 0.951      |

| cosine_precision@1    | 0.797      |

| cosine_precision@3    | 0.3003     |

| cosine_precision@5    | 0.1866     |

| cosine_precision@10   | 0.0951     |

| cosine_recall@1       | 0.797      |

| cosine_recall@3       | 0.901      |

| cosine_recall@5       | 0.933      |

| cosine_recall@10      | 0.951      |

| **cosine_ndcg@10**    | **0.8781** |
| cosine_mrr@10         | 0.8542     |

| cosine_map@100        | 0.8561     |
| query_active_dims     | 119.217    |
| query_sparsity_ratio  | 0.9709     |
| corpus_active_dims    | 119.652    |
| corpus_sparsity_ratio | 0.9708     |

#### Sparse Information Retrieval

* Dataset: `nq_eval_256`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
  ```json

  {

      "max_active_dims": 256

  }

  ```

| Metric                | Value      |
|:----------------------|:-----------|
| cosine_accuracy@1     | 0.8        |

| cosine_accuracy@3     | 0.901      |
| cosine_accuracy@5     | 0.933      |

| cosine_accuracy@10    | 0.951      |
| cosine_precision@1    | 0.8        |

| cosine_precision@3    | 0.3003     |
| cosine_precision@5    | 0.1866     |

| cosine_precision@10   | 0.0951     |
| cosine_recall@1       | 0.8        |

| cosine_recall@3       | 0.901      |
| cosine_recall@5       | 0.933      |

| cosine_recall@10      | 0.951      |
| **cosine_ndcg@10**    | **0.8789** |

| cosine_mrr@10         | 0.8553     |

| cosine_map@100        | 0.8573     |

| query_active_dims     | 133.43     |

| query_sparsity_ratio  | 0.9674     |

| corpus_active_dims    | 129.169    |

| corpus_sparsity_ratio | 0.9685     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### natural-questions



* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)

* Size: 99,000 training samples

* Columns: <code>query</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                              | answer                                                                              |

  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                             | string                                                                              |

  | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |

* Samples:

  | query                                                         | answer                                                                                                                                                                                                                                                                                                                                                                                                                                  |

  |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>who played the father in papa don't preach</code>       | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code>                                                                                                                                                                                                                                                                                                                                                     |

  | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |

  | <code>how many puppies can a dog give birth to</code>         | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code>                                                                                                                                                                                                                                                      |

* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:

  ```json

  {

      "beta": 0.1,

      "gamma": 1.0,

      "loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"

  }

  ```



### Evaluation Dataset



#### natural-questions



* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)

* Size: 1,000 evaluation samples

* Columns: <code>query</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                              | answer                                                                               |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|

  | type    | string                                                                             | string                                                                               |

  | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |

* Samples:

  | query                                                  | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

  |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |

  | <code>what kind of car does jay gatsby drive</code>    | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code>                                       |

  | <code>who sings if i can dream about you</code>        | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code>                                                                                                                                                                                                                   |

* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:

  ```json

  {

      "beta": 0.1,

      "gamma": 1.0,

      "loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 64

- `per_device_eval_batch_size`: 64

- `learning_rate`: 4e-05

- `num_train_epochs`: 1

- `bf16`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 64

- `per_device_eval_batch_size`: 64

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `torch_empty_cache_steps`: None

- `learning_rate`: 4e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.0

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: True

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `include_for_metrics`: []

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `use_liger_kernel`: False

- `eval_use_gather_object`: False

- `average_tokens_across_devices`: False

- `prompts`: None

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

- `router_mapping`: {}

- `learning_rate_mapping`: {}



</details>



### Training Logs

| Epoch  | Step | Training Loss | Validation Loss | nq_eval_4_cosine_ndcg@10 | nq_eval_8_cosine_ndcg@10 | nq_eval_16_cosine_ndcg@10 | nq_eval_32_cosine_ndcg@10 | nq_eval_64_cosine_ndcg@10 | nq_eval_128_cosine_ndcg@10 | nq_eval_256_cosine_ndcg@10 |

|:------:|:----:|:-------------:|:---------------:|:------------------------:|:------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:--------------------------:|:--------------------------:|

| -1     | -1   | -             | -               | 0.2566                   | 0.4513                   | 0.6853                    | 0.8617                    | 0.9369                    | 0.9685                     | 0.9757                     |

| 0.0646 | 100  | 2.9836        | -               | -                        | -                        | -                         | -                         | -                         | -                          | -                          |

| 0.1293 | 200  | 2.7758        | -               | -                        | -                        | -                         | -                         | -                         | -                          | -                          |

| 0.1939 | 300  | 2.6386        | 2.3891          | 0.4003                   | 0.5884                   | 0.7387                    | 0.8220                    | 0.8695                    | 0.9164                     | 0.9372                     |

| 0.2586 | 400  | 2.5466        | -               | -                        | -                        | -                         | -                         | -                         | -                          | -                          |

| 0.3232 | 500  | 2.4711        | -               | -                        | -                        | -                         | -                         | -                         | -                          | -                          |

| 0.3878 | 600  | 2.3918        | 2.1817          | 0.4580                   | 0.6189                   | 0.7230                    | 0.7986                    | 0.8554                    | 0.8939                     | 0.9146                     |

| 0.4525 | 700  | 2.2802        | -               | -                        | -                        | -                         | -                         | -                         | -                          | -                          |

| 0.5171 | 800  | 2.1309        | -               | -                        | -                        | -                         | -                         | -                         | -                          | -                          |

| 0.5818 | 900  | 2.0585        | 1.8844          | 0.4932                   | 0.6402                   | 0.7482                    | 0.8361                    | 0.8665                    | 0.8857                     | 0.8895                     |

| 0.6464 | 1000 | 2.0203        | -               | -                        | -                        | -                         | -                         | -                         | -                          | -                          |

| 0.7111 | 1100 | 1.9934        | -               | -                        | -                        | -                         | -                         | -                         | -                          | -                          |

| 0.7757 | 1200 | 1.9734        | 1.8208          | 0.5168                   | 0.6452                   | 0.7592                    | 0.8371                    | 0.8690                    | 0.8775                     | 0.8804                     |

| 0.8403 | 1300 | 1.9583        | -               | -                        | -                        | -                         | -                         | -                         | -                          | -                          |

| 0.9050 | 1400 | 1.9496        | -               | -                        | -                        | -                         | -                         | -                         | -                          | -                          |

| 0.9696 | 1500 | 1.9499        | 1.8020          | 0.5159                   | 0.6536                   | 0.7568                    | 0.8399                    | 0.8670                    | 0.8785                     | 0.8778                     |

| -1     | -1   | -             | -               | 0.5178                   | 0.6515                   | 0.7573                    | 0.8407                    | 0.8673                    | 0.8781                     | 0.8789                     |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.110 kWh

- **Carbon Emitted**: 0.043 kg of CO2

- **Hours Used**: 0.274 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 4.2.0.dev0

- Transformers: 4.52.4

- PyTorch: 2.6.0+cu124

- Accelerate: 1.5.1

- Datasets: 2.21.0

- Tokenizers: 0.21.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### CSRLoss

```bibtex

@misc{wen2025matryoshkarevisitingsparsecoding,

      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},

      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},

      year={2025},

      eprint={2503.01776},

      archivePrefix={arXiv},

      primaryClass={cs.LG},

      url={https://arxiv.org/abs/2503.01776},

}

```



#### SparseMultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->