---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:99000
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia
continue to take somewhat differing stances on regional conflicts such the Yemeni
Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement,
which has fought against Saudi-backed forces, and the Syrian Civil War, where
the UAE has disagreed with Saudi support for Islamist movements.[4]
- text: Economy of New Zealand New Zealand's diverse market economy has a sizable
service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale
manufacturing industries include aluminium production, food processing, metal
fabrication, wood and paper products. Mining, manufacturing, electricity, gas,
water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary
sector continues to dominate New Zealand's exports, despite accounting for 6.5%
of GDP in 2013.[17]
- text: who was the first president of indian science congress meeting held in kolkata
in 1914
- text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as
a single after a fourteen-year breakup. It was also the first song written by
bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was
played live for the first time during their Hell Freezes Over tour in 1994. It
returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at
No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream
Rock Tracks chart. The song was not played live by the Eagles after the "Hell
Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S.
- text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
who is considered by Christians to be one of the first Gentiles to convert to
the faith, as related in Acts of the Apostles.'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 44.61605747039671
energy_consumed: 0.11478216595334396
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.29
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 4
type: nq_eval_4
metrics:
- type: dot_accuracy@1
value: 0.213
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.332
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.384
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.471
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.213
name: Dot Precision@1
- type: dot_precision@3
value: 0.11066666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.0768
name: Dot Precision@5
- type: dot_precision@10
value: 0.047099999999999996
name: Dot Precision@10
- type: dot_recall@1
value: 0.213
name: Dot Recall@1
- type: dot_recall@3
value: 0.332
name: Dot Recall@3
- type: dot_recall@5
value: 0.384
name: Dot Recall@5
- type: dot_recall@10
value: 0.471
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3320214744887544
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.28887976190476183
name: Dot Mrr@10
- type: dot_map@100
value: 0.29887106812161607
name: Dot Map@100
- type: query_active_dims
value: 4.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9990234375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 4.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9990234375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 8
type: nq_eval_8
metrics:
- type: dot_accuracy@1
value: 0.399
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.547
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.605
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.676
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.399
name: Dot Precision@1
- type: dot_precision@3
value: 0.18233333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.12099999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.0676
name: Dot Precision@10
- type: dot_recall@1
value: 0.399
name: Dot Recall@1
- type: dot_recall@3
value: 0.547
name: Dot Recall@3
- type: dot_recall@5
value: 0.605
name: Dot Recall@5
- type: dot_recall@10
value: 0.676
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5318512792107337
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.48622857142857107
name: Dot Mrr@10
- type: dot_map@100
value: 0.494199623751254
name: Dot Map@100
- type: query_active_dims
value: 8.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.998046875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 8.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.998046875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 16
type: nq_eval_16
metrics:
- type: dot_accuracy@1
value: 0.625
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.772
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.817
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.864
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.625
name: Dot Precision@1
- type: dot_precision@3
value: 0.2573333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.16340000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.0864
name: Dot Precision@10
- type: dot_recall@1
value: 0.625
name: Dot Recall@1
- type: dot_recall@3
value: 0.772
name: Dot Recall@3
- type: dot_recall@5
value: 0.817
name: Dot Recall@5
- type: dot_recall@10
value: 0.864
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.745416578772242
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7073369047619051
name: Dot Mrr@10
- type: dot_map@100
value: 0.7111386394401871
name: Dot Map@100
- type: query_active_dims
value: 16.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.99609375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 16.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99609375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 32
type: nq_eval_32
metrics:
- type: dot_accuracy@1
value: 0.796
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.914
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.935
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.96
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.796
name: Dot Precision@1
- type: dot_precision@3
value: 0.30466666666666664
name: Dot Precision@3
- type: dot_precision@5
value: 0.18700000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.09600000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.796
name: Dot Recall@1
- type: dot_recall@3
value: 0.914
name: Dot Recall@3
- type: dot_recall@5
value: 0.935
name: Dot Recall@5
- type: dot_recall@10
value: 0.96
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8830518503020526
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8578750000000005
name: Dot Mrr@10
- type: dot_map@100
value: 0.8592202466151189
name: Dot Map@100
- type: query_active_dims
value: 32.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9921875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 32.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9921875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 64
type: nq_eval_64
metrics:
- type: dot_accuracy@1
value: 0.874
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.964
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.975
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.984
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.874
name: Dot Precision@1
- type: dot_precision@3
value: 0.32133333333333325
name: Dot Precision@3
- type: dot_precision@5
value: 0.19500000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.0984
name: Dot Precision@10
- type: dot_recall@1
value: 0.874
name: Dot Recall@1
- type: dot_recall@3
value: 0.964
name: Dot Recall@3
- type: dot_recall@5
value: 0.975
name: Dot Recall@5
- type: dot_recall@10
value: 0.984
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9354420170940584
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9191289682539683
name: Dot Mrr@10
- type: dot_map@100
value: 0.91983717784354
name: Dot Map@100
- type: query_active_dims
value: 64.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.984375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 64.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.984375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 128
type: nq_eval_128
metrics:
- type: dot_accuracy@1
value: 0.917
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.982
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.987
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.993
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.917
name: Dot Precision@1
- type: dot_precision@3
value: 0.32733333333333325
name: Dot Precision@3
- type: dot_precision@5
value: 0.19740000000000005
name: Dot Precision@5
- type: dot_precision@10
value: 0.09930000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.917
name: Dot Recall@1
- type: dot_recall@3
value: 0.982
name: Dot Recall@3
- type: dot_recall@5
value: 0.987
name: Dot Recall@5
- type: dot_recall@10
value: 0.993
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9607072002272121
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9497607142857144
name: Dot Mrr@10
- type: dot_map@100
value: 0.949953431875422
name: Dot Map@100
- type: query_active_dims
value: 128.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.96875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 128.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.96875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 256
type: nq_eval_256
metrics:
- type: dot_accuracy@1
value: 0.94
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.989
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.992
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.995
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.94
name: Dot Precision@1
- type: dot_precision@3
value: 0.3296666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.19840000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.09950000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.94
name: Dot Recall@1
- type: dot_recall@3
value: 0.989
name: Dot Recall@3
- type: dot_recall@5
value: 0.992
name: Dot Recall@5
- type: dot_recall@10
value: 0.995
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9722726693687288
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9645107142857143
name: Dot Mrr@10
- type: dot_map@100
value: 0.9645748509204045
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
---
# Sparse CSR model trained on Natural Questions
This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** CSR Sparse Encoder
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions)
- **Similarity Function:** Dot Product
- **Training Dataset:**
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-dot-scale-1-gamma-0.1-detach-2")
# Run inference
queries = [
"who is cornelius in the book of acts",
]
documents = [
'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
"Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[119.9615, 28.3687, 21.7583]])
```
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Dataset: `nq_eval_4`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 4
}
```
| Metric | Value |
|:----------------------|:----------|
| dot_accuracy@1 | 0.213 |
| dot_accuracy@3 | 0.332 |
| dot_accuracy@5 | 0.384 |
| dot_accuracy@10 | 0.471 |
| dot_precision@1 | 0.213 |
| dot_precision@3 | 0.1107 |
| dot_precision@5 | 0.0768 |
| dot_precision@10 | 0.0471 |
| dot_recall@1 | 0.213 |
| dot_recall@3 | 0.332 |
| dot_recall@5 | 0.384 |
| dot_recall@10 | 0.471 |
| **dot_ndcg@10** | **0.332** |
| dot_mrr@10 | 0.2889 |
| dot_map@100 | 0.2989 |
| query_active_dims | 4.0 |
| query_sparsity_ratio | 0.999 |
| corpus_active_dims | 4.0 |
| corpus_sparsity_ratio | 0.999 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_8`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 8
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.399 |
| dot_accuracy@3 | 0.547 |
| dot_accuracy@5 | 0.605 |
| dot_accuracy@10 | 0.676 |
| dot_precision@1 | 0.399 |
| dot_precision@3 | 0.1823 |
| dot_precision@5 | 0.121 |
| dot_precision@10 | 0.0676 |
| dot_recall@1 | 0.399 |
| dot_recall@3 | 0.547 |
| dot_recall@5 | 0.605 |
| dot_recall@10 | 0.676 |
| **dot_ndcg@10** | **0.5319** |
| dot_mrr@10 | 0.4862 |
| dot_map@100 | 0.4942 |
| query_active_dims | 8.0 |
| query_sparsity_ratio | 0.998 |
| corpus_active_dims | 8.0 |
| corpus_sparsity_ratio | 0.998 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_16`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 16
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.625 |
| dot_accuracy@3 | 0.772 |
| dot_accuracy@5 | 0.817 |
| dot_accuracy@10 | 0.864 |
| dot_precision@1 | 0.625 |
| dot_precision@3 | 0.2573 |
| dot_precision@5 | 0.1634 |
| dot_precision@10 | 0.0864 |
| dot_recall@1 | 0.625 |
| dot_recall@3 | 0.772 |
| dot_recall@5 | 0.817 |
| dot_recall@10 | 0.864 |
| **dot_ndcg@10** | **0.7454** |
| dot_mrr@10 | 0.7073 |
| dot_map@100 | 0.7111 |
| query_active_dims | 16.0 |
| query_sparsity_ratio | 0.9961 |
| corpus_active_dims | 16.0 |
| corpus_sparsity_ratio | 0.9961 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_32`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 32
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.796 |
| dot_accuracy@3 | 0.914 |
| dot_accuracy@5 | 0.935 |
| dot_accuracy@10 | 0.96 |
| dot_precision@1 | 0.796 |
| dot_precision@3 | 0.3047 |
| dot_precision@5 | 0.187 |
| dot_precision@10 | 0.096 |
| dot_recall@1 | 0.796 |
| dot_recall@3 | 0.914 |
| dot_recall@5 | 0.935 |
| dot_recall@10 | 0.96 |
| **dot_ndcg@10** | **0.8831** |
| dot_mrr@10 | 0.8579 |
| dot_map@100 | 0.8592 |
| query_active_dims | 32.0 |
| query_sparsity_ratio | 0.9922 |
| corpus_active_dims | 32.0 |
| corpus_sparsity_ratio | 0.9922 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_64`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 64
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.874 |
| dot_accuracy@3 | 0.964 |
| dot_accuracy@5 | 0.975 |
| dot_accuracy@10 | 0.984 |
| dot_precision@1 | 0.874 |
| dot_precision@3 | 0.3213 |
| dot_precision@5 | 0.195 |
| dot_precision@10 | 0.0984 |
| dot_recall@1 | 0.874 |
| dot_recall@3 | 0.964 |
| dot_recall@5 | 0.975 |
| dot_recall@10 | 0.984 |
| **dot_ndcg@10** | **0.9354** |
| dot_mrr@10 | 0.9191 |
| dot_map@100 | 0.9198 |
| query_active_dims | 64.0 |
| query_sparsity_ratio | 0.9844 |
| corpus_active_dims | 64.0 |
| corpus_sparsity_ratio | 0.9844 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_128`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 128
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.917 |
| dot_accuracy@3 | 0.982 |
| dot_accuracy@5 | 0.987 |
| dot_accuracy@10 | 0.993 |
| dot_precision@1 | 0.917 |
| dot_precision@3 | 0.3273 |
| dot_precision@5 | 0.1974 |
| dot_precision@10 | 0.0993 |
| dot_recall@1 | 0.917 |
| dot_recall@3 | 0.982 |
| dot_recall@5 | 0.987 |
| dot_recall@10 | 0.993 |
| **dot_ndcg@10** | **0.9607** |
| dot_mrr@10 | 0.9498 |
| dot_map@100 | 0.95 |
| query_active_dims | 128.0 |
| query_sparsity_ratio | 0.9688 |
| corpus_active_dims | 128.0 |
| corpus_sparsity_ratio | 0.9688 |
#### Sparse Information Retrieval
* Dataset: `nq_eval_256`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 256
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.94 |
| dot_accuracy@3 | 0.989 |
| dot_accuracy@5 | 0.992 |
| dot_accuracy@10 | 0.995 |
| dot_precision@1 | 0.94 |
| dot_precision@3 | 0.3297 |
| dot_precision@5 | 0.1984 |
| dot_precision@10 | 0.0995 |
| dot_recall@1 | 0.94 |
| dot_recall@3 | 0.989 |
| dot_recall@5 | 0.992 |
| dot_recall@10 | 0.995 |
| **dot_ndcg@10** | **0.9723** |
| dot_mrr@10 | 0.9645 |
| dot_map@100 | 0.9646 |
| query_active_dims | 256.0 |
| query_sparsity_ratio | 0.9375 |
| corpus_active_dims | 256.0 |
| corpus_sparsity_ratio | 0.9375 |
## Training Details
### Training Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: query
and answer
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details |
who played the father in papa don't preach
| Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
|
| where was the location of the battle of hastings
| Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
|
| how many puppies can a dog give birth to
| Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
|
* Loss: [CSRLoss
](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 0.1,
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
}
```
### Evaluation Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: query
and answer
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | where is the tiber river located in italy
| Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
|
| what kind of car does jay gatsby drive
| Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
|
| who sings if i can dream about you
| I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
|
* Loss: [CSRLoss
](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 0.1,
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 4e-05
- `num_train_epochs`: 1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters