---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:99000
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia
continue to take somewhat differing stances on regional conflicts such the Yemeni
Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement,
which has fought against Saudi-backed forces, and the Syrian Civil War, where
the UAE has disagreed with Saudi support for Islamist movements.[4]
- text: Economy of New Zealand New Zealand's diverse market economy has a sizable
service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale
manufacturing industries include aluminium production, food processing, metal
fabrication, wood and paper products. Mining, manufacturing, electricity, gas,
water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary
sector continues to dominate New Zealand's exports, despite accounting for 6.5%
of GDP in 2013.[17]
- text: who was the first president of indian science congress meeting held in kolkata
in 1914
- text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as
a single after a fourteen-year breakup. It was also the first song written by
bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was
played live for the first time during their Hell Freezes Over tour in 1994. It
returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at
No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream
Rock Tracks chart. The song was not played live by the Eagles after the "Hell
Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S.
- text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
who is considered by Christians to be one of the first Gentiles to convert to
the faith, as related in Acts of the Apostles.'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 66.56126466621346
energy_consumed: 0.17123983068318005
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.564
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 8
type: NanoMSMARCO_8
metrics:
- type: dot_accuracy@1
value: 0.12
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.24
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.28
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.3
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.12
name: Dot Precision@1
- type: dot_precision@3
value: 0.07999999999999999
name: Dot Precision@3
- type: dot_precision@5
value: 0.056000000000000015
name: Dot Precision@5
- type: dot_precision@10
value: 0.030000000000000006
name: Dot Precision@10
- type: dot_recall@1
value: 0.12
name: Dot Recall@1
- type: dot_recall@3
value: 0.24
name: Dot Recall@3
- type: dot_recall@5
value: 0.28
name: Dot Recall@5
- type: dot_recall@10
value: 0.3
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.21196909248837792
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.18355555555555556
name: Dot Mrr@10
- type: dot_map@100
value: 0.19168473018432397
name: Dot Map@100
- type: query_active_dims
value: 8.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.998046875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 8.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.998046875
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 8
type: NanoBEIR_mean_8
metrics:
- type: dot_accuracy@1
value: 0.12
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.24
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.28
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.3
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.12
name: Dot Precision@1
- type: dot_precision@3
value: 0.07999999999999999
name: Dot Precision@3
- type: dot_precision@5
value: 0.056000000000000015
name: Dot Precision@5
- type: dot_precision@10
value: 0.030000000000000006
name: Dot Precision@10
- type: dot_recall@1
value: 0.12
name: Dot Recall@1
- type: dot_recall@3
value: 0.24
name: Dot Recall@3
- type: dot_recall@5
value: 0.28
name: Dot Recall@5
- type: dot_recall@10
value: 0.3
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.21196909248837792
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.18355555555555556
name: Dot Mrr@10
- type: dot_map@100
value: 0.19168473018432397
name: Dot Map@100
- type: query_active_dims
value: 8.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.998046875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 8.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.998046875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 16
type: NanoMSMARCO_16
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.34
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.44
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.11333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.08000000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.044000000000000004
name: Dot Precision@10
- type: dot_recall@1
value: 0.22
name: Dot Recall@1
- type: dot_recall@3
value: 0.34
name: Dot Recall@3
- type: dot_recall@5
value: 0.4
name: Dot Recall@5
- type: dot_recall@10
value: 0.44
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3259646473373541
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.28955555555555557
name: Dot Mrr@10
- type: dot_map@100
value: 0.306813602994791
name: Dot Map@100
- type: query_active_dims
value: 16.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.99609375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 16.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99609375
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 16
type: NanoBEIR_mean_16
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.34
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.44
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.11333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.08000000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.044000000000000004
name: Dot Precision@10
- type: dot_recall@1
value: 0.22
name: Dot Recall@1
- type: dot_recall@3
value: 0.34
name: Dot Recall@3
- type: dot_recall@5
value: 0.4
name: Dot Recall@5
- type: dot_recall@10
value: 0.44
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3259646473373541
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.28955555555555557
name: Dot Mrr@10
- type: dot_map@100
value: 0.306813602994791
name: Dot Map@100
- type: query_active_dims
value: 16.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.99609375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 16.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99609375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 32
type: NanoMSMARCO_32
metrics:
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.36
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.6
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.11999999999999998
name: Dot Precision@3
- type: dot_precision@5
value: 0.08
name: Dot Precision@5
- type: dot_precision@10
value: 0.06
name: Dot Precision@10
- type: dot_recall@1
value: 0.3
name: Dot Recall@1
- type: dot_recall@3
value: 0.36
name: Dot Recall@3
- type: dot_recall@5
value: 0.4
name: Dot Recall@5
- type: dot_recall@10
value: 0.6
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4175000854041106
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.36360317460317454
name: Dot Mrr@10
- type: dot_map@100
value: 0.37705054554799494
name: Dot Map@100
- type: query_active_dims
value: 32.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9921875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 32.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9921875
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 32
type: NanoBEIR_mean_32
metrics:
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.36
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.6
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.11999999999999998
name: Dot Precision@3
- type: dot_precision@5
value: 0.08
name: Dot Precision@5
- type: dot_precision@10
value: 0.06
name: Dot Precision@10
- type: dot_recall@1
value: 0.3
name: Dot Recall@1
- type: dot_recall@3
value: 0.36
name: Dot Recall@3
- type: dot_recall@5
value: 0.4
name: Dot Recall@5
- type: dot_recall@10
value: 0.6
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4175000854041106
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.36360317460317454
name: Dot Mrr@10
- type: dot_map@100
value: 0.37705054554799494
name: Dot Map@100
- type: query_active_dims
value: 32.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9921875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 32.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9921875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 64
type: NanoMSMARCO_64
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.64
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.15999999999999998
name: Dot Precision@3
- type: dot_precision@5
value: 0.11200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.06400000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.32
name: Dot Recall@1
- type: dot_recall@3
value: 0.48
name: Dot Recall@3
- type: dot_recall@5
value: 0.56
name: Dot Recall@5
- type: dot_recall@10
value: 0.64
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4747516265872855
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4225
name: Dot Mrr@10
- type: dot_map@100
value: 0.43804482701175623
name: Dot Map@100
- type: query_active_dims
value: 64.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.984375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 64.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.984375
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 64
type: NanoBEIR_mean_64
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.64
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.15999999999999998
name: Dot Precision@3
- type: dot_precision@5
value: 0.11200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.06400000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.32
name: Dot Recall@1
- type: dot_recall@3
value: 0.48
name: Dot Recall@3
- type: dot_recall@5
value: 0.56
name: Dot Recall@5
- type: dot_recall@10
value: 0.64
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4747516265872855
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4225
name: Dot Mrr@10
- type: dot_map@100
value: 0.43804482701175623
name: Dot Map@100
- type: query_active_dims
value: 64.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.984375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 64.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.984375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 128
type: NanoMSMARCO_128
metrics:
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.18
name: Dot Precision@3
- type: dot_precision@5
value: 0.128
name: Dot Precision@5
- type: dot_precision@10
value: 0.07400000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.3
name: Dot Recall@1
- type: dot_recall@3
value: 0.54
name: Dot Recall@3
- type: dot_recall@5
value: 0.64
name: Dot Recall@5
- type: dot_recall@10
value: 0.74
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5165502329637498
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4448571428571429
name: Dot Mrr@10
- type: dot_map@100
value: 0.4609321037436295
name: Dot Map@100
- type: query_active_dims
value: 128.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.96875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 128.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.96875
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 128
type: NanoBEIR_mean_128
metrics:
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.18
name: Dot Precision@3
- type: dot_precision@5
value: 0.128
name: Dot Precision@5
- type: dot_precision@10
value: 0.07400000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.3
name: Dot Recall@1
- type: dot_recall@3
value: 0.54
name: Dot Recall@3
- type: dot_recall@5
value: 0.64
name: Dot Recall@5
- type: dot_recall@10
value: 0.74
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5165502329637498
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4448571428571429
name: Dot Mrr@10
- type: dot_map@100
value: 0.4609321037436295
name: Dot Map@100
- type: query_active_dims
value: 128.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.96875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 128.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.96875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 256
type: NanoMSMARCO_256
metrics:
- type: dot_accuracy@1
value: 0.34
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.34
name: Dot Precision@1
- type: dot_precision@3
value: 0.2
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.34
name: Dot Recall@1
- type: dot_recall@3
value: 0.6
name: Dot Recall@3
- type: dot_recall@5
value: 0.74
name: Dot Recall@5
- type: dot_recall@10
value: 0.84
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5842381969358662
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5026904761904762
name: Dot Mrr@10
- type: dot_map@100
value: 0.5098488479343186
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 256
type: NanoBEIR_mean_256
metrics:
- type: dot_accuracy@1
value: 0.34
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.34
name: Dot Precision@1
- type: dot_precision@3
value: 0.2
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.34
name: Dot Recall@1
- type: dot_recall@3
value: 0.6
name: Dot Recall@3
- type: dot_recall@5
value: 0.74
name: Dot Recall@5
- type: dot_recall@10
value: 0.84
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5842381969358662
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5026904761904762
name: Dot Mrr@10
- type: dot_map@100
value: 0.5098488479343186
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.26
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.26
name: Dot Precision@1
- type: dot_precision@3
value: 0.20666666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.156
name: Dot Precision@5
- type: dot_precision@10
value: 0.102
name: Dot Precision@10
- type: dot_recall@1
value: 0.12333333333333332
name: Dot Recall@1
- type: dot_recall@3
value: 0.29333333333333333
name: Dot Recall@3
- type: dot_recall@5
value: 0.34666666666666673
name: Dot Recall@5
- type: dot_recall@10
value: 0.41566666666666663
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.33074042963512007
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.41507936507936505
name: Dot Mrr@10
- type: dot_map@100
value: 0.2605037455645458
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.78
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.92
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.78
name: Dot Precision@1
- type: dot_precision@3
value: 0.68
name: Dot Precision@3
- type: dot_precision@5
value: 0.6
name: Dot Precision@5
- type: dot_precision@10
value: 0.49
name: Dot Precision@10
- type: dot_recall@1
value: 0.08787178599815837
name: Dot Recall@1
- type: dot_recall@3
value: 0.20076849643437242
name: Dot Recall@3
- type: dot_recall@5
value: 0.2551529754028007
name: Dot Recall@5
- type: dot_recall@10
value: 0.35977856932473445
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.631230472759085
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8546666666666668
name: Dot Mrr@10
- type: dot_map@100
value: 0.4715050434861439
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.82
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.94
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.98
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.82
name: Dot Precision@1
- type: dot_precision@3
value: 0.32666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.10399999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.7666666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.9066666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.9266666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.9433333333333332
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8786397520542688
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8795555555555555
name: Dot Mrr@10
- type: dot_map@100
value: 0.8474023961509473
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.46
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.76
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.46
name: Dot Precision@1
- type: dot_precision@3
value: 0.3
name: Dot Precision@3
- type: dot_precision@5
value: 0.22799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.13999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.22924603174603175
name: Dot Recall@1
- type: dot_recall@3
value: 0.4312936507936508
name: Dot Recall@3
- type: dot_recall@5
value: 0.5035396825396825
name: Dot Recall@5
- type: dot_recall@10
value: 0.6116190476190476
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.505122448452203
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5688888888888889
name: Dot Mrr@10
- type: dot_map@100
value: 0.4305964674526582
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.78
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.98
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.78
name: Dot Precision@1
- type: dot_precision@3
value: 0.48666666666666664
name: Dot Precision@3
- type: dot_precision@5
value: 0.32799999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.16999999999999996
name: Dot Precision@10
- type: dot_recall@1
value: 0.39
name: Dot Recall@1
- type: dot_recall@3
value: 0.73
name: Dot Recall@3
- type: dot_recall@5
value: 0.82
name: Dot Recall@5
- type: dot_recall@10
value: 0.85
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7891312606021372
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8563333333333333
name: Dot Mrr@10
- type: dot_map@100
value: 0.7308084845910934
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.76
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.21333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.15200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.078
name: Dot Precision@10
- type: dot_recall@1
value: 0.38
name: Dot Recall@1
- type: dot_recall@3
value: 0.64
name: Dot Recall@3
- type: dot_recall@5
value: 0.76
name: Dot Recall@5
- type: dot_recall@10
value: 0.78
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5906197363202759
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.528
name: Dot Mrr@10
- type: dot_map@100
value: 0.5404706257099874
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.42
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.58
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.68
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.42
name: Dot Precision@1
- type: dot_precision@3
value: 0.3533333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.32
name: Dot Precision@5
- type: dot_precision@10
value: 0.26799999999999996
name: Dot Precision@10
- type: dot_recall@1
value: 0.044434174313891364
name: Dot Recall@1
- type: dot_recall@3
value: 0.06886292486806139
name: Dot Recall@3
- type: dot_recall@5
value: 0.10018663091887436
name: Dot Recall@5
- type: dot_recall@10
value: 0.135993408976131
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3272577842417522
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5120238095238094
name: Dot Mrr@10
- type: dot_map@100
value: 0.1540609053707419
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.52
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.68
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.78
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.52
name: Dot Precision@1
- type: dot_precision@3
value: 0.23333333333333336
name: Dot Precision@3
- type: dot_precision@5
value: 0.16399999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.088
name: Dot Precision@10
- type: dot_recall@1
value: 0.5
name: Dot Recall@1
- type: dot_recall@3
value: 0.65
name: Dot Recall@3
- type: dot_recall@5
value: 0.73
name: Dot Recall@5
- type: dot_recall@10
value: 0.78
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6523707439369819
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6238571428571428
name: Dot Mrr@10
- type: dot_map@100
value: 0.6127092058948297
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.9
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.94
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1.0
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9
name: Dot Precision@1
- type: dot_precision@3
value: 0.4
name: Dot Precision@3
- type: dot_precision@5
value: 0.264
name: Dot Precision@5
- type: dot_precision@10
value: 0.13799999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.7773333333333332
name: Dot Recall@1
- type: dot_recall@3
value: 0.912
name: Dot Recall@3
- type: dot_recall@5
value: 0.986
name: Dot Recall@5
- type: dot_recall@10
value: 0.9966666666666666
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9408238851178163
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.935
name: Dot Mrr@10
- type: dot_map@100
value: 0.9156785714285713
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.56
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.56
name: Dot Precision@1
- type: dot_precision@3
value: 0.3666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.3
name: Dot Precision@5
- type: dot_precision@10
value: 0.21
name: Dot Precision@10
- type: dot_recall@1
value: 0.11866666666666668
name: Dot Recall@1
- type: dot_recall@3
value: 0.2296666666666666
name: Dot Recall@3
- type: dot_recall@5
value: 0.30966666666666665
name: Dot Recall@5
- type: dot_recall@10
value: 0.43066666666666664
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4238434123293462
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6637142857142857
name: Dot Mrr@10
- type: dot_map@100
value: 0.33702650955588553
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.82
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.84
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.2733333333333334
name: Dot Precision@3
- type: dot_precision@5
value: 0.16799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.092
name: Dot Precision@10
- type: dot_recall@1
value: 0.28
name: Dot Recall@1
- type: dot_recall@3
value: 0.82
name: Dot Recall@3
- type: dot_recall@5
value: 0.84
name: Dot Recall@5
- type: dot_recall@10
value: 0.92
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6320575399829071
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5360714285714285
name: Dot Mrr@10
- type: dot_map@100
value: 0.5398250835421888
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.7
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.86
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.7
name: Dot Precision@1
- type: dot_precision@3
value: 0.24666666666666665
name: Dot Precision@3
- type: dot_precision@5
value: 0.176
name: Dot Precision@5
- type: dot_precision@10
value: 0.09599999999999997
name: Dot Precision@10
- type: dot_recall@1
value: 0.665
name: Dot Recall@1
- type: dot_recall@3
value: 0.68
name: Dot Recall@3
- type: dot_recall@5
value: 0.785
name: Dot Recall@5
- type: dot_recall@10
value: 0.85
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7512560957647406
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7302222222222224
name: Dot Mrr@10
- type: dot_map@100
value: 0.7208552252945762
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.6326530612244898
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8979591836734694
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9591836734693877
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6326530612244898
name: Dot Precision@1
- type: dot_precision@3
value: 0.5918367346938774
name: Dot Precision@3
- type: dot_precision@5
value: 0.5510204081632653
name: Dot Precision@5
- type: dot_precision@10
value: 0.4489795918367347
name: Dot Precision@10
- type: dot_recall@1
value: 0.04395130839858616
name: Dot Recall@1
- type: dot_recall@3
value: 0.12411835933794488
name: Dot Recall@3
- type: dot_recall@5
value: 0.18456901766491046
name: Dot Recall@5
- type: dot_recall@10
value: 0.30287435988004324
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5113851766135886
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7748542274052478
name: Dot Mrr@10
- type: dot_map@100
value: 0.375999626455593
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.5763579277864993
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7629199372056513
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8276295133437992
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.88
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.5763579277864993
name: Dot Precision@1
- type: dot_precision@3
value: 0.35988487702773414
name: Dot Precision@3
- type: dot_precision@5
value: 0.2774631083202512
name: Dot Precision@5
- type: dot_precision@10
value: 0.18653689167974882
name: Dot Precision@10
- type: dot_recall@1
value: 0.3389617923428206
name: Dot Recall@1
- type: dot_recall@3
value: 0.514362315238515
name: Dot Recall@3
- type: dot_recall@5
value: 0.5805729466558668
name: Dot Recall@5
- type: dot_recall@10
value: 0.6443537476256377
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6126522106007865
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6829436096783036
name: Dot Mrr@10
- type: dot_map@100
value: 0.5336493761921356
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
---
# Sparse CSR model trained on Natural Questions
This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** CSR Sparse Encoder
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions)
- **Similarity Function:** Dot Product
- **Training Dataset:**
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-no-reconstruction-2")
# Run inference
queries = [
"who is cornelius in the book of acts",
]
documents = [
'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
"Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[57.9578, 15.8308, 16.0606]])
```
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Dataset: `NanoMSMARCO_8`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 8
}
```
| Metric | Value |
|:----------------------|:----------|
| dot_accuracy@1 | 0.12 |
| dot_accuracy@3 | 0.24 |
| dot_accuracy@5 | 0.28 |
| dot_accuracy@10 | 0.3 |
| dot_precision@1 | 0.12 |
| dot_precision@3 | 0.08 |
| dot_precision@5 | 0.056 |
| dot_precision@10 | 0.03 |
| dot_recall@1 | 0.12 |
| dot_recall@3 | 0.24 |
| dot_recall@5 | 0.28 |
| dot_recall@10 | 0.3 |
| **dot_ndcg@10** | **0.212** |
| dot_mrr@10 | 0.1836 |
| dot_map@100 | 0.1917 |
| query_active_dims | 8.0 |
| query_sparsity_ratio | 0.998 |
| corpus_active_dims | 8.0 |
| corpus_sparsity_ratio | 0.998 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_8`
* Evaluated with [SparseNanoBEIREvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco"
],
"max_active_dims": 8
}
```
| Metric | Value |
|:----------------------|:----------|
| dot_accuracy@1 | 0.12 |
| dot_accuracy@3 | 0.24 |
| dot_accuracy@5 | 0.28 |
| dot_accuracy@10 | 0.3 |
| dot_precision@1 | 0.12 |
| dot_precision@3 | 0.08 |
| dot_precision@5 | 0.056 |
| dot_precision@10 | 0.03 |
| dot_recall@1 | 0.12 |
| dot_recall@3 | 0.24 |
| dot_recall@5 | 0.28 |
| dot_recall@10 | 0.3 |
| **dot_ndcg@10** | **0.212** |
| dot_mrr@10 | 0.1836 |
| dot_map@100 | 0.1917 |
| query_active_dims | 8.0 |
| query_sparsity_ratio | 0.998 |
| corpus_active_dims | 8.0 |
| corpus_sparsity_ratio | 0.998 |
#### Sparse Information Retrieval
* Dataset: `NanoMSMARCO_16`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 16
}
```
| Metric | Value |
|:----------------------|:----------|
| dot_accuracy@1 | 0.22 |
| dot_accuracy@3 | 0.34 |
| dot_accuracy@5 | 0.4 |
| dot_accuracy@10 | 0.44 |
| dot_precision@1 | 0.22 |
| dot_precision@3 | 0.1133 |
| dot_precision@5 | 0.08 |
| dot_precision@10 | 0.044 |
| dot_recall@1 | 0.22 |
| dot_recall@3 | 0.34 |
| dot_recall@5 | 0.4 |
| dot_recall@10 | 0.44 |
| **dot_ndcg@10** | **0.326** |
| dot_mrr@10 | 0.2896 |
| dot_map@100 | 0.3068 |
| query_active_dims | 16.0 |
| query_sparsity_ratio | 0.9961 |
| corpus_active_dims | 16.0 |
| corpus_sparsity_ratio | 0.9961 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_16`
* Evaluated with [SparseNanoBEIREvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco"
],
"max_active_dims": 16
}
```
| Metric | Value |
|:----------------------|:----------|
| dot_accuracy@1 | 0.22 |
| dot_accuracy@3 | 0.34 |
| dot_accuracy@5 | 0.4 |
| dot_accuracy@10 | 0.44 |
| dot_precision@1 | 0.22 |
| dot_precision@3 | 0.1133 |
| dot_precision@5 | 0.08 |
| dot_precision@10 | 0.044 |
| dot_recall@1 | 0.22 |
| dot_recall@3 | 0.34 |
| dot_recall@5 | 0.4 |
| dot_recall@10 | 0.44 |
| **dot_ndcg@10** | **0.326** |
| dot_mrr@10 | 0.2896 |
| dot_map@100 | 0.3068 |
| query_active_dims | 16.0 |
| query_sparsity_ratio | 0.9961 |
| corpus_active_dims | 16.0 |
| corpus_sparsity_ratio | 0.9961 |
#### Sparse Information Retrieval
* Dataset: `NanoMSMARCO_32`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 32
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.3 |
| dot_accuracy@3 | 0.36 |
| dot_accuracy@5 | 0.4 |
| dot_accuracy@10 | 0.6 |
| dot_precision@1 | 0.3 |
| dot_precision@3 | 0.12 |
| dot_precision@5 | 0.08 |
| dot_precision@10 | 0.06 |
| dot_recall@1 | 0.3 |
| dot_recall@3 | 0.36 |
| dot_recall@5 | 0.4 |
| dot_recall@10 | 0.6 |
| **dot_ndcg@10** | **0.4175** |
| dot_mrr@10 | 0.3636 |
| dot_map@100 | 0.3771 |
| query_active_dims | 32.0 |
| query_sparsity_ratio | 0.9922 |
| corpus_active_dims | 32.0 |
| corpus_sparsity_ratio | 0.9922 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_32`
* Evaluated with [SparseNanoBEIREvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco"
],
"max_active_dims": 32
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.3 |
| dot_accuracy@3 | 0.36 |
| dot_accuracy@5 | 0.4 |
| dot_accuracy@10 | 0.6 |
| dot_precision@1 | 0.3 |
| dot_precision@3 | 0.12 |
| dot_precision@5 | 0.08 |
| dot_precision@10 | 0.06 |
| dot_recall@1 | 0.3 |
| dot_recall@3 | 0.36 |
| dot_recall@5 | 0.4 |
| dot_recall@10 | 0.6 |
| **dot_ndcg@10** | **0.4175** |
| dot_mrr@10 | 0.3636 |
| dot_map@100 | 0.3771 |
| query_active_dims | 32.0 |
| query_sparsity_ratio | 0.9922 |
| corpus_active_dims | 32.0 |
| corpus_sparsity_ratio | 0.9922 |
#### Sparse Information Retrieval
* Dataset: `NanoMSMARCO_64`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 64
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.32 |
| dot_accuracy@3 | 0.48 |
| dot_accuracy@5 | 0.56 |
| dot_accuracy@10 | 0.64 |
| dot_precision@1 | 0.32 |
| dot_precision@3 | 0.16 |
| dot_precision@5 | 0.112 |
| dot_precision@10 | 0.064 |
| dot_recall@1 | 0.32 |
| dot_recall@3 | 0.48 |
| dot_recall@5 | 0.56 |
| dot_recall@10 | 0.64 |
| **dot_ndcg@10** | **0.4748** |
| dot_mrr@10 | 0.4225 |
| dot_map@100 | 0.438 |
| query_active_dims | 64.0 |
| query_sparsity_ratio | 0.9844 |
| corpus_active_dims | 64.0 |
| corpus_sparsity_ratio | 0.9844 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_64`
* Evaluated with [SparseNanoBEIREvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco"
],
"max_active_dims": 64
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.32 |
| dot_accuracy@3 | 0.48 |
| dot_accuracy@5 | 0.56 |
| dot_accuracy@10 | 0.64 |
| dot_precision@1 | 0.32 |
| dot_precision@3 | 0.16 |
| dot_precision@5 | 0.112 |
| dot_precision@10 | 0.064 |
| dot_recall@1 | 0.32 |
| dot_recall@3 | 0.48 |
| dot_recall@5 | 0.56 |
| dot_recall@10 | 0.64 |
| **dot_ndcg@10** | **0.4748** |
| dot_mrr@10 | 0.4225 |
| dot_map@100 | 0.438 |
| query_active_dims | 64.0 |
| query_sparsity_ratio | 0.9844 |
| corpus_active_dims | 64.0 |
| corpus_sparsity_ratio | 0.9844 |
#### Sparse Information Retrieval
* Dataset: `NanoMSMARCO_128`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 128
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.3 |
| dot_accuracy@3 | 0.54 |
| dot_accuracy@5 | 0.64 |
| dot_accuracy@10 | 0.74 |
| dot_precision@1 | 0.3 |
| dot_precision@3 | 0.18 |
| dot_precision@5 | 0.128 |
| dot_precision@10 | 0.074 |
| dot_recall@1 | 0.3 |
| dot_recall@3 | 0.54 |
| dot_recall@5 | 0.64 |
| dot_recall@10 | 0.74 |
| **dot_ndcg@10** | **0.5166** |
| dot_mrr@10 | 0.4449 |
| dot_map@100 | 0.4609 |
| query_active_dims | 128.0 |
| query_sparsity_ratio | 0.9688 |
| corpus_active_dims | 128.0 |
| corpus_sparsity_ratio | 0.9688 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_128`
* Evaluated with [SparseNanoBEIREvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco"
],
"max_active_dims": 128
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.3 |
| dot_accuracy@3 | 0.54 |
| dot_accuracy@5 | 0.64 |
| dot_accuracy@10 | 0.74 |
| dot_precision@1 | 0.3 |
| dot_precision@3 | 0.18 |
| dot_precision@5 | 0.128 |
| dot_precision@10 | 0.074 |
| dot_recall@1 | 0.3 |
| dot_recall@3 | 0.54 |
| dot_recall@5 | 0.64 |
| dot_recall@10 | 0.74 |
| **dot_ndcg@10** | **0.5166** |
| dot_mrr@10 | 0.4449 |
| dot_map@100 | 0.4609 |
| query_active_dims | 128.0 |
| query_sparsity_ratio | 0.9688 |
| corpus_active_dims | 128.0 |
| corpus_sparsity_ratio | 0.9688 |
#### Sparse Information Retrieval
* Dataset: `NanoMSMARCO_256`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 256
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.34 |
| dot_accuracy@3 | 0.6 |
| dot_accuracy@5 | 0.74 |
| dot_accuracy@10 | 0.84 |
| dot_precision@1 | 0.34 |
| dot_precision@3 | 0.2 |
| dot_precision@5 | 0.148 |
| dot_precision@10 | 0.084 |
| dot_recall@1 | 0.34 |
| dot_recall@3 | 0.6 |
| dot_recall@5 | 0.74 |
| dot_recall@10 | 0.84 |
| **dot_ndcg@10** | **0.5842** |
| dot_mrr@10 | 0.5027 |
| dot_map@100 | 0.5098 |
| query_active_dims | 256.0 |
| query_sparsity_ratio | 0.9375 |
| corpus_active_dims | 256.0 |
| corpus_sparsity_ratio | 0.9375 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_256`
* Evaluated with [SparseNanoBEIREvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco"
],
"max_active_dims": 256
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.34 |
| dot_accuracy@3 | 0.6 |
| dot_accuracy@5 | 0.74 |
| dot_accuracy@10 | 0.84 |
| dot_precision@1 | 0.34 |
| dot_precision@3 | 0.2 |
| dot_precision@5 | 0.148 |
| dot_precision@10 | 0.084 |
| dot_recall@1 | 0.34 |
| dot_recall@3 | 0.6 |
| dot_recall@5 | 0.74 |
| dot_recall@10 | 0.84 |
| **dot_ndcg@10** | **0.5842** |
| dot_mrr@10 | 0.5027 |
| dot_map@100 | 0.5098 |
| query_active_dims | 256.0 |
| query_sparsity_ratio | 0.9375 |
| corpus_active_dims | 256.0 |
| corpus_sparsity_ratio | 0.9375 |
#### Sparse Information Retrieval
* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:----------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| dot_accuracy@1 | 0.26 | 0.78 | 0.82 | 0.46 | 0.78 | 0.38 | 0.42 | 0.52 | 0.9 | 0.56 | 0.28 | 0.7 | 0.6327 |
| dot_accuracy@3 | 0.56 | 0.92 | 0.94 | 0.64 | 0.9 | 0.64 | 0.58 | 0.68 | 0.94 | 0.7 | 0.82 | 0.7 | 0.898 |
| dot_accuracy@5 | 0.62 | 0.96 | 0.96 | 0.7 | 0.96 | 0.76 | 0.62 | 0.78 | 1.0 | 0.8 | 0.84 | 0.8 | 0.9592 |
| dot_accuracy@10 | 0.74 | 1.0 | 0.98 | 0.76 | 0.98 | 0.78 | 0.68 | 0.82 | 1.0 | 0.92 | 0.92 | 0.86 | 1.0 |
| dot_precision@1 | 0.26 | 0.78 | 0.82 | 0.46 | 0.78 | 0.38 | 0.42 | 0.52 | 0.9 | 0.56 | 0.28 | 0.7 | 0.6327 |
| dot_precision@3 | 0.2067 | 0.68 | 0.3267 | 0.3 | 0.4867 | 0.2133 | 0.3533 | 0.2333 | 0.4 | 0.3667 | 0.2733 | 0.2467 | 0.5918 |
| dot_precision@5 | 0.156 | 0.6 | 0.2 | 0.228 | 0.328 | 0.152 | 0.32 | 0.164 | 0.264 | 0.3 | 0.168 | 0.176 | 0.551 |
| dot_precision@10 | 0.102 | 0.49 | 0.104 | 0.14 | 0.17 | 0.078 | 0.268 | 0.088 | 0.138 | 0.21 | 0.092 | 0.096 | 0.449 |
| dot_recall@1 | 0.1233 | 0.0879 | 0.7667 | 0.2292 | 0.39 | 0.38 | 0.0444 | 0.5 | 0.7773 | 0.1187 | 0.28 | 0.665 | 0.044 |
| dot_recall@3 | 0.2933 | 0.2008 | 0.9067 | 0.4313 | 0.73 | 0.64 | 0.0689 | 0.65 | 0.912 | 0.2297 | 0.82 | 0.68 | 0.1241 |
| dot_recall@5 | 0.3467 | 0.2552 | 0.9267 | 0.5035 | 0.82 | 0.76 | 0.1002 | 0.73 | 0.986 | 0.3097 | 0.84 | 0.785 | 0.1846 |
| dot_recall@10 | 0.4157 | 0.3598 | 0.9433 | 0.6116 | 0.85 | 0.78 | 0.136 | 0.78 | 0.9967 | 0.4307 | 0.92 | 0.85 | 0.3029 |
| **dot_ndcg@10** | **0.3307** | **0.6312** | **0.8786** | **0.5051** | **0.7891** | **0.5906** | **0.3273** | **0.6524** | **0.9408** | **0.4238** | **0.6321** | **0.7513** | **0.5114** |
| dot_mrr@10 | 0.4151 | 0.8547 | 0.8796 | 0.5689 | 0.8563 | 0.528 | 0.512 | 0.6239 | 0.935 | 0.6637 | 0.5361 | 0.7302 | 0.7749 |
| dot_map@100 | 0.2605 | 0.4715 | 0.8474 | 0.4306 | 0.7308 | 0.5405 | 0.1541 | 0.6127 | 0.9157 | 0.337 | 0.5398 | 0.7209 | 0.376 |
| query_active_dims | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 |
| query_sparsity_ratio | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 |
| corpus_active_dims | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 |
| corpus_sparsity_ratio | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [SparseNanoBEIREvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"climatefever",
"dbpedia",
"fever",
"fiqa2018",
"hotpotqa",
"msmarco",
"nfcorpus",
"nq",
"quoraretrieval",
"scidocs",
"arguana",
"scifact",
"touche2020"
]
}
```
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.5764 |
| dot_accuracy@3 | 0.7629 |
| dot_accuracy@5 | 0.8276 |
| dot_accuracy@10 | 0.88 |
| dot_precision@1 | 0.5764 |
| dot_precision@3 | 0.3599 |
| dot_precision@5 | 0.2775 |
| dot_precision@10 | 0.1865 |
| dot_recall@1 | 0.339 |
| dot_recall@3 | 0.5144 |
| dot_recall@5 | 0.5806 |
| dot_recall@10 | 0.6444 |
| **dot_ndcg@10** | **0.6127** |
| dot_mrr@10 | 0.6829 |
| dot_map@100 | 0.5336 |
| query_active_dims | 256.0 |
| query_sparsity_ratio | 0.9375 |
| corpus_active_dims | 256.0 |
| corpus_sparsity_ratio | 0.9375 |
## Training Details
### Training Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: query
and answer
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details |
who played the father in papa don't preach
| Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
|
| where was the location of the battle of hastings
| Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
|
| how many puppies can a dog give birth to
| Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
|
* Loss: [CSRLoss
](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 3.0,
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
}
```
### Evaluation Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: query
and answer
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | where is the tiber river located in italy
| Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
|
| what kind of car does jay gatsby drive
| Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
|
| who sings if i can dream about you
| I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
|
* Loss: [CSRLoss
](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 3.0,
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 4e-05
- `num_train_epochs`: 1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters