--- language: - en license: apache-2.0 tags: - sentence-transformers - sparse-encoder - sparse - csr - generated_from_trainer - dataset_size:99000 - loss:CSRLoss - loss:SparseMultipleNegativesRankingLoss base_model: mixedbread-ai/mxbai-embed-large-v1 widget: - text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia continue to take somewhat differing stances on regional conflicts such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement, which has fought against Saudi-backed forces, and the Syrian Civil War, where the UAE has disagreed with Saudi support for Islamist movements.[4] - text: Economy of New Zealand New Zealand's diverse market economy has a sizable service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale manufacturing industries include aluminium production, food processing, metal fabrication, wood and paper products. Mining, manufacturing, electricity, gas, water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary sector continues to dominate New Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17] - text: who was the first president of indian science congress meeting held in kolkata in 1914 - text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as a single after a fourteen-year breakup. It was also the first song written by bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was played live for the first time during their Hell Freezes Over tour in 1994. It returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song was not played live by the Eagles after the "Hell Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S. - text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.' datasets: - sentence-transformers/natural-questions pipeline_tag: feature-extraction library_name: sentence-transformers metrics: - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 - query_active_dims - query_sparsity_ratio - corpus_active_dims - corpus_sparsity_ratio co2_eq_emissions: emissions: 47.434702684263996 energy_consumed: 0.12203359561891627 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.375 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: Sparse CSR model trained on Natural Questions results: - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 8 type: NanoMSMARCO_8 metrics: - type: dot_accuracy@1 value: 0.16 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.26 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.3 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.38 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.16 name: Dot Precision@1 - type: dot_precision@3 value: 0.08666666666666666 name: Dot Precision@3 - type: dot_precision@5 value: 0.06000000000000001 name: Dot Precision@5 - type: dot_precision@10 value: 0.038000000000000006 name: Dot Precision@10 - type: dot_recall@1 value: 0.16 name: Dot Recall@1 - type: dot_recall@3 value: 0.26 name: Dot Recall@3 - type: dot_recall@5 value: 0.3 name: Dot Recall@5 - type: dot_recall@10 value: 0.38 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.2643920551837278 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.2287222222222222 name: Dot Mrr@10 - type: dot_map@100 value: 0.2421742990834593 name: Dot Map@100 - type: query_active_dims value: 8.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.998046875 name: Query Sparsity Ratio - type: corpus_active_dims value: 8.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.998046875 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 8 type: NanoBEIR_mean_8 metrics: - type: dot_accuracy@1 value: 0.16 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.26 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.3 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.38 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.16 name: Dot Precision@1 - type: dot_precision@3 value: 0.08666666666666666 name: Dot Precision@3 - type: dot_precision@5 value: 0.06000000000000001 name: Dot Precision@5 - type: dot_precision@10 value: 0.038000000000000006 name: Dot Precision@10 - type: dot_recall@1 value: 0.16 name: Dot Recall@1 - type: dot_recall@3 value: 0.26 name: Dot Recall@3 - type: dot_recall@5 value: 0.3 name: Dot Recall@5 - type: dot_recall@10 value: 0.38 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.2643920551837278 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.2287222222222222 name: Dot Mrr@10 - type: dot_map@100 value: 0.2421742990834593 name: Dot Map@100 - type: query_active_dims value: 8.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.998046875 name: Query Sparsity Ratio - type: corpus_active_dims value: 8.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.998046875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 16 type: NanoMSMARCO_16 metrics: - type: dot_accuracy@1 value: 0.2 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.36 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.52 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.56 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.2 name: Dot Precision@1 - type: dot_precision@3 value: 0.11999999999999998 name: Dot Precision@3 - type: dot_precision@5 value: 0.10400000000000001 name: Dot Precision@5 - type: dot_precision@10 value: 0.056000000000000015 name: Dot Precision@10 - type: dot_recall@1 value: 0.2 name: Dot Recall@1 - type: dot_recall@3 value: 0.36 name: Dot Recall@3 - type: dot_recall@5 value: 0.52 name: Dot Recall@5 - type: dot_recall@10 value: 0.56 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.37793342795121726 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.3195238095238095 name: Dot Mrr@10 - type: dot_map@100 value: 0.3313906364396061 name: Dot Map@100 - type: query_active_dims value: 16.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.99609375 name: Query Sparsity Ratio - type: corpus_active_dims value: 16.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.99609375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 16 type: NanoBEIR_mean_16 metrics: - type: dot_accuracy@1 value: 0.2 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.36 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.52 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.56 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.2 name: Dot Precision@1 - type: dot_precision@3 value: 0.11999999999999998 name: Dot Precision@3 - type: dot_precision@5 value: 0.10400000000000001 name: Dot Precision@5 - type: dot_precision@10 value: 0.056000000000000015 name: Dot Precision@10 - type: dot_recall@1 value: 0.2 name: Dot Recall@1 - type: dot_recall@3 value: 0.36 name: Dot Recall@3 - type: dot_recall@5 value: 0.52 name: Dot Recall@5 - type: dot_recall@10 value: 0.56 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.37793342795121726 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.3195238095238095 name: Dot Mrr@10 - type: dot_map@100 value: 0.3313906364396061 name: Dot Map@100 - type: query_active_dims value: 16.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.99609375 name: Query Sparsity Ratio - type: corpus_active_dims value: 16.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.99609375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 32 type: NanoMSMARCO_32 metrics: - type: dot_accuracy@1 value: 0.28 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.46 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.62 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.74 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.28 name: Dot Precision@1 - type: dot_precision@3 value: 0.1533333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.124 name: Dot Precision@5 - type: dot_precision@10 value: 0.07400000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.28 name: Dot Recall@1 - type: dot_recall@3 value: 0.46 name: Dot Recall@3 - type: dot_recall@5 value: 0.62 name: Dot Recall@5 - type: dot_recall@10 value: 0.74 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.49220107783094286 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.414984126984127 name: Dot Mrr@10 - type: dot_map@100 value: 0.4254258308486964 name: Dot Map@100 - type: query_active_dims value: 32.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9921875 name: Query Sparsity Ratio - type: corpus_active_dims value: 32.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9921875 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 32 type: NanoBEIR_mean_32 metrics: - type: dot_accuracy@1 value: 0.28 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.46 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.62 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.74 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.28 name: Dot Precision@1 - type: dot_precision@3 value: 0.1533333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.124 name: Dot Precision@5 - type: dot_precision@10 value: 0.07400000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.28 name: Dot Recall@1 - type: dot_recall@3 value: 0.46 name: Dot Recall@3 - type: dot_recall@5 value: 0.62 name: Dot Recall@5 - type: dot_recall@10 value: 0.74 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.49220107783094286 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.414984126984127 name: Dot Mrr@10 - type: dot_map@100 value: 0.4254258308486964 name: Dot Map@100 - type: query_active_dims value: 32.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9921875 name: Query Sparsity Ratio - type: corpus_active_dims value: 32.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9921875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 64 type: NanoMSMARCO_64 metrics: - type: dot_accuracy@1 value: 0.26 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.56 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.66 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.78 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.26 name: Dot Precision@1 - type: dot_precision@3 value: 0.18666666666666668 name: Dot Precision@3 - type: dot_precision@5 value: 0.132 name: Dot Precision@5 - type: dot_precision@10 value: 0.07800000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.26 name: Dot Recall@1 - type: dot_recall@3 value: 0.56 name: Dot Recall@3 - type: dot_recall@5 value: 0.66 name: Dot Recall@5 - type: dot_recall@10 value: 0.78 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5211165234079713 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.43816666666666676 name: Dot Mrr@10 - type: dot_map@100 value: 0.44682904023702474 name: Dot Map@100 - type: query_active_dims value: 64.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.984375 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.984375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 64 type: NanoBEIR_mean_64 metrics: - type: dot_accuracy@1 value: 0.26 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.56 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.66 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.78 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.26 name: Dot Precision@1 - type: dot_precision@3 value: 0.18666666666666668 name: Dot Precision@3 - type: dot_precision@5 value: 0.132 name: Dot Precision@5 - type: dot_precision@10 value: 0.07800000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.26 name: Dot Recall@1 - type: dot_recall@3 value: 0.56 name: Dot Recall@3 - type: dot_recall@5 value: 0.66 name: Dot Recall@5 - type: dot_recall@10 value: 0.78 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5211165234079713 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.43816666666666676 name: Dot Mrr@10 - type: dot_map@100 value: 0.44682904023702474 name: Dot Map@100 - type: query_active_dims value: 64.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.984375 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.984375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 128 type: NanoMSMARCO_128 metrics: - type: dot_accuracy@1 value: 0.3 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.58 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.72 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.78 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.3 name: Dot Precision@1 - type: dot_precision@3 value: 0.19333333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.14400000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.078 name: Dot Precision@10 - type: dot_recall@1 value: 0.3 name: Dot Recall@1 - type: dot_recall@3 value: 0.58 name: Dot Recall@3 - type: dot_recall@5 value: 0.72 name: Dot Recall@5 - type: dot_recall@10 value: 0.78 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5452270995944036 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.4693571428571428 name: Dot Mrr@10 - type: dot_map@100 value: 0.4800750120044718 name: Dot Map@100 - type: query_active_dims value: 128.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.96875 name: Query Sparsity Ratio - type: corpus_active_dims value: 128.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.96875 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 128 type: NanoBEIR_mean_128 metrics: - type: dot_accuracy@1 value: 0.3 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.58 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.72 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.78 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.3 name: Dot Precision@1 - type: dot_precision@3 value: 0.19333333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.14400000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.078 name: Dot Precision@10 - type: dot_recall@1 value: 0.3 name: Dot Recall@1 - type: dot_recall@3 value: 0.58 name: Dot Recall@3 - type: dot_recall@5 value: 0.72 name: Dot Recall@5 - type: dot_recall@10 value: 0.78 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5452270995944036 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.4693571428571428 name: Dot Mrr@10 - type: dot_map@100 value: 0.4800750120044718 name: Dot Map@100 - type: query_active_dims value: 128.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.96875 name: Query Sparsity Ratio - type: corpus_active_dims value: 128.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.96875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 256 type: NanoMSMARCO_256 metrics: - type: dot_accuracy@1 value: 0.34 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.58 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.72 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.88 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.34 name: Dot Precision@1 - type: dot_precision@3 value: 0.19333333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.14400000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.088 name: Dot Precision@10 - type: dot_recall@1 value: 0.34 name: Dot Recall@1 - type: dot_recall@3 value: 0.58 name: Dot Recall@3 - type: dot_recall@5 value: 0.72 name: Dot Recall@5 - type: dot_recall@10 value: 0.88 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6012297417081948 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5137063492063492 name: Dot Mrr@10 - type: dot_map@100 value: 0.5174560618904659 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 256 type: NanoBEIR_mean_256 metrics: - type: dot_accuracy@1 value: 0.34 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.58 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.72 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.88 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.34 name: Dot Precision@1 - type: dot_precision@3 value: 0.19333333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.14400000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.088 name: Dot Precision@10 - type: dot_recall@1 value: 0.34 name: Dot Recall@1 - type: dot_recall@3 value: 0.58 name: Dot Recall@3 - type: dot_recall@5 value: 0.72 name: Dot Recall@5 - type: dot_recall@10 value: 0.88 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6012297417081948 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5137063492063492 name: Dot Mrr@10 - type: dot_map@100 value: 0.5174560618904659 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoClimateFEVER type: NanoClimateFEVER metrics: - type: dot_accuracy@1 value: 0.26 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.54 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.68 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.8 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.26 name: Dot Precision@1 - type: dot_precision@3 value: 0.2 name: Dot Precision@3 - type: dot_precision@5 value: 0.16 name: Dot Precision@5 - type: dot_precision@10 value: 0.11599999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.125 name: Dot Recall@1 - type: dot_recall@3 value: 0.264 name: Dot Recall@3 - type: dot_recall@5 value: 0.3413333333333334 name: Dot Recall@5 - type: dot_recall@10 value: 0.45966666666666667 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.35170577305757716 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.43010317460317443 name: Dot Mrr@10 - type: dot_map@100 value: 0.2687894311785997 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoDBPedia type: NanoDBPedia metrics: - type: dot_accuracy@1 value: 0.84 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.86 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.94 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.98 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.84 name: Dot Precision@1 - type: dot_precision@3 value: 0.64 name: Dot Precision@3 - type: dot_precision@5 value: 0.5840000000000001 name: Dot Precision@5 - type: dot_precision@10 value: 0.496 name: Dot Precision@10 - type: dot_recall@1 value: 0.10173542236179474 name: Dot Recall@1 - type: dot_recall@3 value: 0.17058256895318635 name: Dot Recall@3 - type: dot_recall@5 value: 0.2583095364918772 name: Dot Recall@5 - type: dot_recall@10 value: 0.3630014394355859 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6336927949275843 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.8761904761904762 name: Dot Mrr@10 - type: dot_map@100 value: 0.4758024592559406 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoFEVER type: NanoFEVER metrics: - type: dot_accuracy@1 value: 0.86 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.92 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.94 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.94 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.86 name: Dot Precision@1 - type: dot_precision@3 value: 0.3133333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.19599999999999995 name: Dot Precision@5 - type: dot_precision@10 value: 0.09799999999999998 name: Dot Precision@10 - type: dot_recall@1 value: 0.8066666666666665 name: Dot Recall@1 - type: dot_recall@3 value: 0.8766666666666667 name: Dot Recall@3 - type: dot_recall@5 value: 0.9066666666666667 name: Dot Recall@5 - type: dot_recall@10 value: 0.9066666666666667 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.8718114197539545 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.8873333333333332 name: Dot Mrr@10 - type: dot_map@100 value: 0.8545556012614837 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoFiQA2018 type: NanoFiQA2018 metrics: - type: dot_accuracy@1 value: 0.52 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.68 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.74 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.78 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.52 name: Dot Precision@1 - type: dot_precision@3 value: 0.32666666666666666 name: Dot Precision@3 - type: dot_precision@5 value: 0.244 name: Dot Precision@5 - type: dot_precision@10 value: 0.136 name: Dot Precision@10 - type: dot_recall@1 value: 0.27924603174603174 name: Dot Recall@1 - type: dot_recall@3 value: 0.46423809523809517 name: Dot Recall@3 - type: dot_recall@5 value: 0.5373730158730158 name: Dot Recall@5 - type: dot_recall@10 value: 0.5967063492063491 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.524168679753325 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.6079999999999999 name: Dot Mrr@10 - type: dot_map@100 value: 0.4629550043583209 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoHotpotQA type: NanoHotpotQA metrics: - type: dot_accuracy@1 value: 0.78 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.96 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.96 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.96 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.78 name: Dot Precision@1 - type: dot_precision@3 value: 0.5266666666666666 name: Dot Precision@3 - type: dot_precision@5 value: 0.33599999999999997 name: Dot Precision@5 - type: dot_precision@10 value: 0.17199999999999996 name: Dot Precision@10 - type: dot_recall@1 value: 0.39 name: Dot Recall@1 - type: dot_recall@3 value: 0.79 name: Dot Recall@3 - type: dot_recall@5 value: 0.84 name: Dot Recall@5 - type: dot_recall@10 value: 0.86 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.8057192735678995 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.86 name: Dot Mrr@10 - type: dot_map@100 value: 0.7534450002577441 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: dot_accuracy@1 value: 0.34 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.58 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.72 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.88 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.34 name: Dot Precision@1 - type: dot_precision@3 value: 0.19333333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.14400000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.088 name: Dot Precision@10 - type: dot_recall@1 value: 0.34 name: Dot Recall@1 - type: dot_recall@3 value: 0.58 name: Dot Recall@3 - type: dot_recall@5 value: 0.72 name: Dot Recall@5 - type: dot_recall@10 value: 0.88 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6004025758045302 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5123253968253968 name: Dot Mrr@10 - type: dot_map@100 value: 0.516161874779488 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoNFCorpus type: NanoNFCorpus metrics: - type: dot_accuracy@1 value: 0.36 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.54 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.58 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.78 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.36 name: Dot Precision@1 - type: dot_precision@3 value: 0.3399999999999999 name: Dot Precision@3 - type: dot_precision@5 value: 0.324 name: Dot Precision@5 - type: dot_precision@10 value: 0.29600000000000004 name: Dot Precision@10 - type: dot_recall@1 value: 0.02204584498659392 name: Dot Recall@1 - type: dot_recall@3 value: 0.07879591204712627 name: Dot Recall@3 - type: dot_recall@5 value: 0.10547939299642282 name: Dot Recall@5 - type: dot_recall@10 value: 0.14785915311216402 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.33938410167518285 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.4792698412698413 name: Dot Mrr@10 - type: dot_map@100 value: 0.15285384570175153 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: dot_accuracy@1 value: 0.48 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.7 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.78 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.84 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.48 name: Dot Precision@1 - type: dot_precision@3 value: 0.23333333333333336 name: Dot Precision@3 - type: dot_precision@5 value: 0.16 name: Dot Precision@5 - type: dot_precision@10 value: 0.092 name: Dot Precision@10 - type: dot_recall@1 value: 0.45 name: Dot Recall@1 - type: dot_recall@3 value: 0.65 name: Dot Recall@3 - type: dot_recall@5 value: 0.72 name: Dot Recall@5 - type: dot_recall@10 value: 0.81 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6405630856499873 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.6049444444444443 name: Dot Mrr@10 - type: dot_map@100 value: 0.5830795845663244 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoQuoraRetrieval type: NanoQuoraRetrieval metrics: - type: dot_accuracy@1 value: 0.9 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.98 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 1.0 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.9 name: Dot Precision@1 - type: dot_precision@3 value: 0.40666666666666657 name: Dot Precision@3 - type: dot_precision@5 value: 0.264 name: Dot Precision@5 - type: dot_precision@10 value: 0.13599999999999998 name: Dot Precision@10 - type: dot_recall@1 value: 0.7773333333333332 name: Dot Recall@1 - type: dot_recall@3 value: 0.9420000000000001 name: Dot Recall@3 - type: dot_recall@5 value: 0.986 name: Dot Recall@5 - type: dot_recall@10 value: 0.9933333333333334 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9416151444086611 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9406666666666667 name: Dot Mrr@10 - type: dot_map@100 value: 0.9166897546897548 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoSCIDOCS type: NanoSCIDOCS metrics: - type: dot_accuracy@1 value: 0.54 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.72 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.8 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.96 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.54 name: Dot Precision@1 - type: dot_precision@3 value: 0.3533333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.30000000000000004 name: Dot Precision@5 - type: dot_precision@10 value: 0.22 name: Dot Precision@10 - type: dot_recall@1 value: 0.11466666666666668 name: Dot Recall@1 - type: dot_recall@3 value: 0.22066666666666662 name: Dot Recall@3 - type: dot_recall@5 value: 0.3106666666666667 name: Dot Recall@5 - type: dot_recall@10 value: 0.45166666666666655 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.43056509196331577 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.6608888888888889 name: Dot Mrr@10 - type: dot_map@100 value: 0.33416401376998806 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoArguAna type: NanoArguAna metrics: - type: dot_accuracy@1 value: 0.28 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.68 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.84 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.96 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.28 name: Dot Precision@1 - type: dot_precision@3 value: 0.22666666666666668 name: Dot Precision@3 - type: dot_precision@5 value: 0.16799999999999998 name: Dot Precision@5 - type: dot_precision@10 value: 0.09599999999999997 name: Dot Precision@10 - type: dot_recall@1 value: 0.28 name: Dot Recall@1 - type: dot_recall@3 value: 0.68 name: Dot Recall@3 - type: dot_recall@5 value: 0.84 name: Dot Recall@5 - type: dot_recall@10 value: 0.96 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6189399449298651 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5095 name: Dot Mrr@10 - type: dot_map@100 value: 0.5115 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoSciFact type: NanoSciFact metrics: - type: dot_accuracy@1 value: 0.62 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.72 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.78 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.86 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.62 name: Dot Precision@1 - type: dot_precision@3 value: 0.25999999999999995 name: Dot Precision@3 - type: dot_precision@5 value: 0.17199999999999996 name: Dot Precision@5 - type: dot_precision@10 value: 0.09799999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.595 name: Dot Recall@1 - type: dot_recall@3 value: 0.71 name: Dot Recall@3 - type: dot_recall@5 value: 0.765 name: Dot Recall@5 - type: dot_recall@10 value: 0.86 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.7339772270342122 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.6960238095238094 name: Dot Mrr@10 - type: dot_map@100 value: 0.692771989570098 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoTouche2020 type: NanoTouche2020 metrics: - type: dot_accuracy@1 value: 0.5918367346938775 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.8367346938775511 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.9183673469387755 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.9591836734693877 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.5918367346938775 name: Dot Precision@1 - type: dot_precision@3 value: 0.5510204081632653 name: Dot Precision@3 - type: dot_precision@5 value: 0.5224489795918367 name: Dot Precision@5 - type: dot_precision@10 value: 0.436734693877551 name: Dot Precision@10 - type: dot_recall@1 value: 0.04213824203491695 name: Dot Recall@1 - type: dot_recall@3 value: 0.11466092557078722 name: Dot Recall@3 - type: dot_recall@5 value: 0.17849505170580585 name: Dot Recall@5 - type: dot_recall@10 value: 0.28879003826995 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.48796783228419977 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.7384839650145772 name: Dot Mrr@10 - type: dot_map@100 value: 0.3666982120682313 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: dot_accuracy@1 value: 0.5670643642072213 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.7474411302982732 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.8214128728414443 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.8999372056514913 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.5670643642072213 name: Dot Precision@1 - type: dot_precision@3 value: 0.3516169544740973 name: Dot Precision@3 - type: dot_precision@5 value: 0.2749576138147567 name: Dot Precision@5 - type: dot_precision@10 value: 0.19082574568288851 name: Dot Precision@10 - type: dot_recall@1 value: 0.3326024775227695 name: Dot Recall@1 - type: dot_recall@3 value: 0.5032008334725021 name: Dot Recall@3 - type: dot_recall@5 value: 0.5776402818256761 name: Dot Recall@5 - type: dot_recall@10 value: 0.6598223317967217 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6138856111392534 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.6772099997508161 name: Dot Mrr@10 - type: dot_map@100 value: 0.529958982419825 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio --- # Sparse CSR model trained on Natural Questions This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval. ## Model Details ### Model Description - **Model Type:** CSR Sparse Encoder - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions) - **Similarity Function:** Dot Product - **Training Dataset:** - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder) ### Full Model Architecture ``` SparseEncoder( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SparseEncoder # Download from the 🤗 Hub model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-updated-3-gamma") # Run inference queries = [ "who is cornelius in the book of acts", ] documents = [ 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.', "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]", 'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 4096] [3, 4096] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[109.6969, 27.9723, 19.3123]]) ``` ## Evaluation ### Metrics #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_8` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 8 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.16 | | dot_accuracy@3 | 0.26 | | dot_accuracy@5 | 0.3 | | dot_accuracy@10 | 0.38 | | dot_precision@1 | 0.16 | | dot_precision@3 | 0.0867 | | dot_precision@5 | 0.06 | | dot_precision@10 | 0.038 | | dot_recall@1 | 0.16 | | dot_recall@3 | 0.26 | | dot_recall@5 | 0.3 | | dot_recall@10 | 0.38 | | **dot_ndcg@10** | **0.2644** | | dot_mrr@10 | 0.2287 | | dot_map@100 | 0.2422 | | query_active_dims | 8.0 | | query_sparsity_ratio | 0.998 | | corpus_active_dims | 8.0 | | corpus_sparsity_ratio | 0.998 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_8` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 8 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.16 | | dot_accuracy@3 | 0.26 | | dot_accuracy@5 | 0.3 | | dot_accuracy@10 | 0.38 | | dot_precision@1 | 0.16 | | dot_precision@3 | 0.0867 | | dot_precision@5 | 0.06 | | dot_precision@10 | 0.038 | | dot_recall@1 | 0.16 | | dot_recall@3 | 0.26 | | dot_recall@5 | 0.3 | | dot_recall@10 | 0.38 | | **dot_ndcg@10** | **0.2644** | | dot_mrr@10 | 0.2287 | | dot_map@100 | 0.2422 | | query_active_dims | 8.0 | | query_sparsity_ratio | 0.998 | | corpus_active_dims | 8.0 | | corpus_sparsity_ratio | 0.998 | #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_16` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 16 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.2 | | dot_accuracy@3 | 0.36 | | dot_accuracy@5 | 0.52 | | dot_accuracy@10 | 0.56 | | dot_precision@1 | 0.2 | | dot_precision@3 | 0.12 | | dot_precision@5 | 0.104 | | dot_precision@10 | 0.056 | | dot_recall@1 | 0.2 | | dot_recall@3 | 0.36 | | dot_recall@5 | 0.52 | | dot_recall@10 | 0.56 | | **dot_ndcg@10** | **0.3779** | | dot_mrr@10 | 0.3195 | | dot_map@100 | 0.3314 | | query_active_dims | 16.0 | | query_sparsity_ratio | 0.9961 | | corpus_active_dims | 16.0 | | corpus_sparsity_ratio | 0.9961 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_16` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 16 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.2 | | dot_accuracy@3 | 0.36 | | dot_accuracy@5 | 0.52 | | dot_accuracy@10 | 0.56 | | dot_precision@1 | 0.2 | | dot_precision@3 | 0.12 | | dot_precision@5 | 0.104 | | dot_precision@10 | 0.056 | | dot_recall@1 | 0.2 | | dot_recall@3 | 0.36 | | dot_recall@5 | 0.52 | | dot_recall@10 | 0.56 | | **dot_ndcg@10** | **0.3779** | | dot_mrr@10 | 0.3195 | | dot_map@100 | 0.3314 | | query_active_dims | 16.0 | | query_sparsity_ratio | 0.9961 | | corpus_active_dims | 16.0 | | corpus_sparsity_ratio | 0.9961 | #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_32` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 32 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.28 | | dot_accuracy@3 | 0.46 | | dot_accuracy@5 | 0.62 | | dot_accuracy@10 | 0.74 | | dot_precision@1 | 0.28 | | dot_precision@3 | 0.1533 | | dot_precision@5 | 0.124 | | dot_precision@10 | 0.074 | | dot_recall@1 | 0.28 | | dot_recall@3 | 0.46 | | dot_recall@5 | 0.62 | | dot_recall@10 | 0.74 | | **dot_ndcg@10** | **0.4922** | | dot_mrr@10 | 0.415 | | dot_map@100 | 0.4254 | | query_active_dims | 32.0 | | query_sparsity_ratio | 0.9922 | | corpus_active_dims | 32.0 | | corpus_sparsity_ratio | 0.9922 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_32` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 32 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.28 | | dot_accuracy@3 | 0.46 | | dot_accuracy@5 | 0.62 | | dot_accuracy@10 | 0.74 | | dot_precision@1 | 0.28 | | dot_precision@3 | 0.1533 | | dot_precision@5 | 0.124 | | dot_precision@10 | 0.074 | | dot_recall@1 | 0.28 | | dot_recall@3 | 0.46 | | dot_recall@5 | 0.62 | | dot_recall@10 | 0.74 | | **dot_ndcg@10** | **0.4922** | | dot_mrr@10 | 0.415 | | dot_map@100 | 0.4254 | | query_active_dims | 32.0 | | query_sparsity_ratio | 0.9922 | | corpus_active_dims | 32.0 | | corpus_sparsity_ratio | 0.9922 | #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_64` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 64 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.26 | | dot_accuracy@3 | 0.56 | | dot_accuracy@5 | 0.66 | | dot_accuracy@10 | 0.78 | | dot_precision@1 | 0.26 | | dot_precision@3 | 0.1867 | | dot_precision@5 | 0.132 | | dot_precision@10 | 0.078 | | dot_recall@1 | 0.26 | | dot_recall@3 | 0.56 | | dot_recall@5 | 0.66 | | dot_recall@10 | 0.78 | | **dot_ndcg@10** | **0.5211** | | dot_mrr@10 | 0.4382 | | dot_map@100 | 0.4468 | | query_active_dims | 64.0 | | query_sparsity_ratio | 0.9844 | | corpus_active_dims | 64.0 | | corpus_sparsity_ratio | 0.9844 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_64` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 64 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.26 | | dot_accuracy@3 | 0.56 | | dot_accuracy@5 | 0.66 | | dot_accuracy@10 | 0.78 | | dot_precision@1 | 0.26 | | dot_precision@3 | 0.1867 | | dot_precision@5 | 0.132 | | dot_precision@10 | 0.078 | | dot_recall@1 | 0.26 | | dot_recall@3 | 0.56 | | dot_recall@5 | 0.66 | | dot_recall@10 | 0.78 | | **dot_ndcg@10** | **0.5211** | | dot_mrr@10 | 0.4382 | | dot_map@100 | 0.4468 | | query_active_dims | 64.0 | | query_sparsity_ratio | 0.9844 | | corpus_active_dims | 64.0 | | corpus_sparsity_ratio | 0.9844 | #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_128` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 128 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.3 | | dot_accuracy@3 | 0.58 | | dot_accuracy@5 | 0.72 | | dot_accuracy@10 | 0.78 | | dot_precision@1 | 0.3 | | dot_precision@3 | 0.1933 | | dot_precision@5 | 0.144 | | dot_precision@10 | 0.078 | | dot_recall@1 | 0.3 | | dot_recall@3 | 0.58 | | dot_recall@5 | 0.72 | | dot_recall@10 | 0.78 | | **dot_ndcg@10** | **0.5452** | | dot_mrr@10 | 0.4694 | | dot_map@100 | 0.4801 | | query_active_dims | 128.0 | | query_sparsity_ratio | 0.9688 | | corpus_active_dims | 128.0 | | corpus_sparsity_ratio | 0.9688 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_128` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 128 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.3 | | dot_accuracy@3 | 0.58 | | dot_accuracy@5 | 0.72 | | dot_accuracy@10 | 0.78 | | dot_precision@1 | 0.3 | | dot_precision@3 | 0.1933 | | dot_precision@5 | 0.144 | | dot_precision@10 | 0.078 | | dot_recall@1 | 0.3 | | dot_recall@3 | 0.58 | | dot_recall@5 | 0.72 | | dot_recall@10 | 0.78 | | **dot_ndcg@10** | **0.5452** | | dot_mrr@10 | 0.4694 | | dot_map@100 | 0.4801 | | query_active_dims | 128.0 | | query_sparsity_ratio | 0.9688 | | corpus_active_dims | 128.0 | | corpus_sparsity_ratio | 0.9688 | #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_256` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 256 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.34 | | dot_accuracy@3 | 0.58 | | dot_accuracy@5 | 0.72 | | dot_accuracy@10 | 0.88 | | dot_precision@1 | 0.34 | | dot_precision@3 | 0.1933 | | dot_precision@5 | 0.144 | | dot_precision@10 | 0.088 | | dot_recall@1 | 0.34 | | dot_recall@3 | 0.58 | | dot_recall@5 | 0.72 | | dot_recall@10 | 0.88 | | **dot_ndcg@10** | **0.6012** | | dot_mrr@10 | 0.5137 | | dot_map@100 | 0.5175 | | query_active_dims | 256.0 | | query_sparsity_ratio | 0.9375 | | corpus_active_dims | 256.0 | | corpus_sparsity_ratio | 0.9375 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_256` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 256 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.34 | | dot_accuracy@3 | 0.58 | | dot_accuracy@5 | 0.72 | | dot_accuracy@10 | 0.88 | | dot_precision@1 | 0.34 | | dot_precision@3 | 0.1933 | | dot_precision@5 | 0.144 | | dot_precision@10 | 0.088 | | dot_recall@1 | 0.34 | | dot_recall@3 | 0.58 | | dot_recall@5 | 0.72 | | dot_recall@10 | 0.88 | | **dot_ndcg@10** | **0.6012** | | dot_mrr@10 | 0.5137 | | dot_map@100 | 0.5175 | | query_active_dims | 256.0 | | query_sparsity_ratio | 0.9375 | | corpus_active_dims | 256.0 | | corpus_sparsity_ratio | 0.9375 | #### Sparse Information Retrieval * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 | |:----------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------| | dot_accuracy@1 | 0.26 | 0.84 | 0.86 | 0.52 | 0.78 | 0.34 | 0.36 | 0.48 | 0.9 | 0.54 | 0.28 | 0.62 | 0.5918 | | dot_accuracy@3 | 0.54 | 0.86 | 0.92 | 0.68 | 0.96 | 0.58 | 0.54 | 0.7 | 0.98 | 0.72 | 0.68 | 0.72 | 0.8367 | | dot_accuracy@5 | 0.68 | 0.94 | 0.94 | 0.74 | 0.96 | 0.72 | 0.58 | 0.78 | 1.0 | 0.8 | 0.84 | 0.78 | 0.9184 | | dot_accuracy@10 | 0.8 | 0.98 | 0.94 | 0.78 | 0.96 | 0.88 | 0.78 | 0.84 | 1.0 | 0.96 | 0.96 | 0.86 | 0.9592 | | dot_precision@1 | 0.26 | 0.84 | 0.86 | 0.52 | 0.78 | 0.34 | 0.36 | 0.48 | 0.9 | 0.54 | 0.28 | 0.62 | 0.5918 | | dot_precision@3 | 0.2 | 0.64 | 0.3133 | 0.3267 | 0.5267 | 0.1933 | 0.34 | 0.2333 | 0.4067 | 0.3533 | 0.2267 | 0.26 | 0.551 | | dot_precision@5 | 0.16 | 0.584 | 0.196 | 0.244 | 0.336 | 0.144 | 0.324 | 0.16 | 0.264 | 0.3 | 0.168 | 0.172 | 0.5224 | | dot_precision@10 | 0.116 | 0.496 | 0.098 | 0.136 | 0.172 | 0.088 | 0.296 | 0.092 | 0.136 | 0.22 | 0.096 | 0.098 | 0.4367 | | dot_recall@1 | 0.125 | 0.1017 | 0.8067 | 0.2792 | 0.39 | 0.34 | 0.022 | 0.45 | 0.7773 | 0.1147 | 0.28 | 0.595 | 0.0421 | | dot_recall@3 | 0.264 | 0.1706 | 0.8767 | 0.4642 | 0.79 | 0.58 | 0.0788 | 0.65 | 0.942 | 0.2207 | 0.68 | 0.71 | 0.1147 | | dot_recall@5 | 0.3413 | 0.2583 | 0.9067 | 0.5374 | 0.84 | 0.72 | 0.1055 | 0.72 | 0.986 | 0.3107 | 0.84 | 0.765 | 0.1785 | | dot_recall@10 | 0.4597 | 0.363 | 0.9067 | 0.5967 | 0.86 | 0.88 | 0.1479 | 0.81 | 0.9933 | 0.4517 | 0.96 | 0.86 | 0.2888 | | **dot_ndcg@10** | **0.3517** | **0.6337** | **0.8718** | **0.5242** | **0.8057** | **0.6004** | **0.3394** | **0.6406** | **0.9416** | **0.4306** | **0.6189** | **0.734** | **0.488** | | dot_mrr@10 | 0.4301 | 0.8762 | 0.8873 | 0.608 | 0.86 | 0.5123 | 0.4793 | 0.6049 | 0.9407 | 0.6609 | 0.5095 | 0.696 | 0.7385 | | dot_map@100 | 0.2688 | 0.4758 | 0.8546 | 0.463 | 0.7534 | 0.5162 | 0.1529 | 0.5831 | 0.9167 | 0.3342 | 0.5115 | 0.6928 | 0.3667 | | query_active_dims | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | | query_sparsity_ratio | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | | corpus_active_dims | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | | corpus_sparsity_ratio | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.5671 | | dot_accuracy@3 | 0.7474 | | dot_accuracy@5 | 0.8214 | | dot_accuracy@10 | 0.8999 | | dot_precision@1 | 0.5671 | | dot_precision@3 | 0.3516 | | dot_precision@5 | 0.275 | | dot_precision@10 | 0.1908 | | dot_recall@1 | 0.3326 | | dot_recall@3 | 0.5032 | | dot_recall@5 | 0.5776 | | dot_recall@10 | 0.6598 | | **dot_ndcg@10** | **0.6139** | | dot_mrr@10 | 0.6772 | | dot_map@100 | 0.53 | | query_active_dims | 256.0 | | query_sparsity_ratio | 0.9375 | | corpus_active_dims | 256.0 | | corpus_sparsity_ratio | 0.9375 | ## Training Details ### Training Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 99,000 training samples * Columns: query and answer * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | query | answer | |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | who played the father in papa don't preach | Alex McArthur Alex McArthur (born March 6, 1957) is an American actor. | | where was the location of the battle of hastings | Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory. | | how many puppies can a dog give birth to | Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22] | * Loss: [CSRLoss](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 3.0, "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')" } ``` ### Evaluation Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 1,000 evaluation samples * Columns: query and answer * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | query | answer | |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | where is the tiber river located in italy | Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks. | | what kind of car does jay gatsby drive | Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry. | | who sings if i can dream about you | I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1] | * Loss: [CSRLoss](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 3.0, "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 4e-05 - `num_train_epochs`: 1 - `bf16`: True - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 4e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_8_dot_ndcg@10 | NanoBEIR_mean_8_dot_ndcg@10 | NanoMSMARCO_16_dot_ndcg@10 | NanoBEIR_mean_16_dot_ndcg@10 | NanoMSMARCO_32_dot_ndcg@10 | NanoBEIR_mean_32_dot_ndcg@10 | NanoMSMARCO_64_dot_ndcg@10 | NanoBEIR_mean_64_dot_ndcg@10 | NanoMSMARCO_128_dot_ndcg@10 | NanoBEIR_mean_128_dot_ndcg@10 | NanoMSMARCO_256_dot_ndcg@10 | NanoBEIR_mean_256_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | |:----------:|:--------:|:-------------:|:---------------:|:-------------------------:|:---------------------------:|:--------------------------:|:----------------------------:|:--------------------------:|:----------------------------:|:--------------------------:|:----------------------------:|:---------------------------:|:-----------------------------:|:---------------------------:|:-----------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:-----------------------:|:------------------------:|:------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|:-------------------------:| | -1 | -1 | - | - | 0.1761 | 0.1761 | 0.3606 | 0.3606 | 0.4594 | 0.4594 | 0.5242 | 0.5242 | 0.5340 | 0.5340 | 0.6114 | 0.6114 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0646 | 100 | 0.4772 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1293 | 200 | 0.5194 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1939 | 300 | 0.5562 | 0.5943 | 0.1845 | 0.1845 | 0.3927 | 0.3927 | 0.4948 | 0.4948 | 0.5317 | 0.5317 | 0.5446 | 0.5446 | 0.5852 | 0.5852 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2586 | 400 | 0.4754 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3232 | 500 | 0.5033 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3878 | 600 | 0.5309 | 0.4936 | 0.2922 | 0.2922 | 0.4045 | 0.4045 | 0.4662 | 0.4662 | 0.5397 | 0.5397 | 0.5570 | 0.5570 | 0.5925 | 0.5925 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4525 | 700 | 0.5566 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5171 | 800 | 0.5634 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5818 | 900 | 0.549 | 0.4587 | 0.2317 | 0.2317 | 0.3703 | 0.3703 | 0.4874 | 0.4874 | 0.5371 | 0.5371 | 0.5722 | 0.5722 | 0.5795 | 0.5795 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6464 | 1000 | 0.5503 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7111 | 1100 | 0.4568 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7757 | 1200 | 0.5555 | 0.4304 | 0.3129 | 0.3129 | 0.3837 | 0.3837 | 0.5105 | 0.5105 | 0.5042 | 0.5042 | 0.5435 | 0.5435 | 0.6011 | 0.6011 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8403 | 1300 | 0.518 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9050 | 1400 | 0.4763 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | **0.9696** | **1500** | **0.4828** | **0.4055** | **0.2644** | **0.2644** | **0.3779** | **0.3779** | **0.4922** | **0.4922** | **0.5211** | **0.5211** | **0.5452** | **0.5452** | **0.6012** | **0.6012** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | | -1 | -1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.3517 | 0.6337 | 0.8718 | 0.5242 | 0.8057 | 0.6004 | 0.3394 | 0.6406 | 0.9416 | 0.4306 | 0.6189 | 0.7340 | 0.4880 | 0.6139 | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.122 kWh - **Carbon Emitted**: 0.047 kg of CO2 - **Hours Used**: 0.375 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 4.2.0.dev0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.1 - Datasets: 2.21.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CSRLoss ```bibtex @misc{wen2025matryoshkarevisitingsparsecoding, title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation}, author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You}, year={2025}, eprint={2503.01776}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.01776}, } ``` #### SparseMultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```