--- language: - en license: apache-2.0 tags: - sentence-transformers - sparse-encoder - sparse - csr - generated_from_trainer - dataset_size:99000 - loss:CSRLoss - loss:SparseMultipleNegativesRankingLoss base_model: mixedbread-ai/mxbai-embed-large-v1 widget: - text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia continue to take somewhat differing stances on regional conflicts such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement, which has fought against Saudi-backed forces, and the Syrian Civil War, where the UAE has disagreed with Saudi support for Islamist movements.[4] - text: Economy of New Zealand New Zealand's diverse market economy has a sizable service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale manufacturing industries include aluminium production, food processing, metal fabrication, wood and paper products. Mining, manufacturing, electricity, gas, water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary sector continues to dominate New Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17] - text: who was the first president of indian science congress meeting held in kolkata in 1914 - text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as a single after a fourteen-year breakup. It was also the first song written by bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was played live for the first time during their Hell Freezes Over tour in 1994. It returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song was not played live by the Eagles after the "Hell Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S. - text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.' datasets: - sentence-transformers/natural-questions pipeline_tag: feature-extraction library_name: sentence-transformers metrics: - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 - query_active_dims - query_sparsity_ratio - corpus_active_dims - corpus_sparsity_ratio co2_eq_emissions: emissions: 47.46504952064221 energy_consumed: 0.12211166786032028 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.373 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: Sparse CSR model trained on Natural Questions results: - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 8 type: NanoMSMARCO_8 metrics: - type: dot_accuracy@1 value: 0.16 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.2 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.28 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.4 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.16 name: Dot Precision@1 - type: dot_precision@3 value: 0.06666666666666667 name: Dot Precision@3 - type: dot_precision@5 value: 0.056000000000000015 name: Dot Precision@5 - type: dot_precision@10 value: 0.04 name: Dot Precision@10 - type: dot_recall@1 value: 0.16 name: Dot Recall@1 - type: dot_recall@3 value: 0.2 name: Dot Recall@3 - type: dot_recall@5 value: 0.28 name: Dot Recall@5 - type: dot_recall@10 value: 0.4 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.2553207334684595 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.2125238095238095 name: Dot Mrr@10 - type: dot_map@100 value: 0.2276491742120407 name: Dot Map@100 - type: query_active_dims value: 8.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.998046875 name: Query Sparsity Ratio - type: corpus_active_dims value: 8.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.998046875 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 8 type: NanoBEIR_mean_8 metrics: - type: dot_accuracy@1 value: 0.16 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.2 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.28 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.4 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.16 name: Dot Precision@1 - type: dot_precision@3 value: 0.06666666666666667 name: Dot Precision@3 - type: dot_precision@5 value: 0.056000000000000015 name: Dot Precision@5 - type: dot_precision@10 value: 0.04 name: Dot Precision@10 - type: dot_recall@1 value: 0.16 name: Dot Recall@1 - type: dot_recall@3 value: 0.2 name: Dot Recall@3 - type: dot_recall@5 value: 0.28 name: Dot Recall@5 - type: dot_recall@10 value: 0.4 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.2553207334684595 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.2125238095238095 name: Dot Mrr@10 - type: dot_map@100 value: 0.2276491742120407 name: Dot Map@100 - type: query_active_dims value: 8.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.998046875 name: Query Sparsity Ratio - type: corpus_active_dims value: 8.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.998046875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 16 type: NanoMSMARCO_16 metrics: - type: dot_accuracy@1 value: 0.24 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.38 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.5 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.58 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.24 name: Dot Precision@1 - type: dot_precision@3 value: 0.12666666666666665 name: Dot Precision@3 - type: dot_precision@5 value: 0.1 name: Dot Precision@5 - type: dot_precision@10 value: 0.05800000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.24 name: Dot Recall@1 - type: dot_recall@3 value: 0.38 name: Dot Recall@3 - type: dot_recall@5 value: 0.5 name: Dot Recall@5 - type: dot_recall@10 value: 0.58 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.3970913773706993 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.34011111111111114 name: Dot Mrr@10 - type: dot_map@100 value: 0.3530097721306681 name: Dot Map@100 - type: query_active_dims value: 16.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.99609375 name: Query Sparsity Ratio - type: corpus_active_dims value: 16.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.99609375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 16 type: NanoBEIR_mean_16 metrics: - type: dot_accuracy@1 value: 0.24 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.38 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.5 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.58 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.24 name: Dot Precision@1 - type: dot_precision@3 value: 0.12666666666666665 name: Dot Precision@3 - type: dot_precision@5 value: 0.1 name: Dot Precision@5 - type: dot_precision@10 value: 0.05800000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.24 name: Dot Recall@1 - type: dot_recall@3 value: 0.38 name: Dot Recall@3 - type: dot_recall@5 value: 0.5 name: Dot Recall@5 - type: dot_recall@10 value: 0.58 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.3970913773706993 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.34011111111111114 name: Dot Mrr@10 - type: dot_map@100 value: 0.3530097721306681 name: Dot Map@100 - type: query_active_dims value: 16.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.99609375 name: Query Sparsity Ratio - type: corpus_active_dims value: 16.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.99609375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 32 type: NanoMSMARCO_32 metrics: - type: dot_accuracy@1 value: 0.3 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.46 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.62 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.7 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.3 name: Dot Precision@1 - type: dot_precision@3 value: 0.15333333333333332 name: Dot Precision@3 - type: dot_precision@5 value: 0.12400000000000003 name: Dot Precision@5 - type: dot_precision@10 value: 0.07 name: Dot Precision@10 - type: dot_recall@1 value: 0.3 name: Dot Recall@1 - type: dot_recall@3 value: 0.46 name: Dot Recall@3 - type: dot_recall@5 value: 0.62 name: Dot Recall@5 - type: dot_recall@10 value: 0.7 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.4872873611978302 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.4205555555555555 name: Dot Mrr@10 - type: dot_map@100 value: 0.43261790702081204 name: Dot Map@100 - type: query_active_dims value: 32.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9921875 name: Query Sparsity Ratio - type: corpus_active_dims value: 32.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9921875 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 32 type: NanoBEIR_mean_32 metrics: - type: dot_accuracy@1 value: 0.3 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.46 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.62 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.7 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.3 name: Dot Precision@1 - type: dot_precision@3 value: 0.15333333333333332 name: Dot Precision@3 - type: dot_precision@5 value: 0.12400000000000003 name: Dot Precision@5 - type: dot_precision@10 value: 0.07 name: Dot Precision@10 - type: dot_recall@1 value: 0.3 name: Dot Recall@1 - type: dot_recall@3 value: 0.46 name: Dot Recall@3 - type: dot_recall@5 value: 0.62 name: Dot Recall@5 - type: dot_recall@10 value: 0.7 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.4872873611978302 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.4205555555555555 name: Dot Mrr@10 - type: dot_map@100 value: 0.43261790702081204 name: Dot Map@100 - type: query_active_dims value: 32.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9921875 name: Query Sparsity Ratio - type: corpus_active_dims value: 32.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9921875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 64 type: NanoMSMARCO_64 metrics: - type: dot_accuracy@1 value: 0.42 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.6 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.68 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.78 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.42 name: Dot Precision@1 - type: dot_precision@3 value: 0.2 name: Dot Precision@3 - type: dot_precision@5 value: 0.136 name: Dot Precision@5 - type: dot_precision@10 value: 0.07800000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.42 name: Dot Recall@1 - type: dot_recall@3 value: 0.6 name: Dot Recall@3 - type: dot_recall@5 value: 0.68 name: Dot Recall@5 - type: dot_recall@10 value: 0.78 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.591060924123 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5316666666666666 name: Dot Mrr@10 - type: dot_map@100 value: 0.5405635822735777 name: Dot Map@100 - type: query_active_dims value: 64.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.984375 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.984375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 64 type: NanoBEIR_mean_64 metrics: - type: dot_accuracy@1 value: 0.42 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.6 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.68 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.78 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.42 name: Dot Precision@1 - type: dot_precision@3 value: 0.2 name: Dot Precision@3 - type: dot_precision@5 value: 0.136 name: Dot Precision@5 - type: dot_precision@10 value: 0.07800000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.42 name: Dot Recall@1 - type: dot_recall@3 value: 0.6 name: Dot Recall@3 - type: dot_recall@5 value: 0.68 name: Dot Recall@5 - type: dot_recall@10 value: 0.78 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.591060924123 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5316666666666666 name: Dot Mrr@10 - type: dot_map@100 value: 0.5405635822735777 name: Dot Map@100 - type: query_active_dims value: 64.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.984375 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.984375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 128 type: NanoMSMARCO_128 metrics: - type: dot_accuracy@1 value: 0.36 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.64 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.72 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.82 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.36 name: Dot Precision@1 - type: dot_precision@3 value: 0.21333333333333332 name: Dot Precision@3 - type: dot_precision@5 value: 0.14400000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.08199999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.36 name: Dot Recall@1 - type: dot_recall@3 value: 0.64 name: Dot Recall@3 - type: dot_recall@5 value: 0.72 name: Dot Recall@5 - type: dot_recall@10 value: 0.82 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5877041624403332 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5139126984126984 name: Dot Mrr@10 - type: dot_map@100 value: 0.5216553078498245 name: Dot Map@100 - type: query_active_dims value: 128.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.96875 name: Query Sparsity Ratio - type: corpus_active_dims value: 128.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.96875 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 128 type: NanoBEIR_mean_128 metrics: - type: dot_accuracy@1 value: 0.36 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.64 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.72 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.82 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.36 name: Dot Precision@1 - type: dot_precision@3 value: 0.21333333333333332 name: Dot Precision@3 - type: dot_precision@5 value: 0.14400000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.08199999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.36 name: Dot Recall@1 - type: dot_recall@3 value: 0.64 name: Dot Recall@3 - type: dot_recall@5 value: 0.72 name: Dot Recall@5 - type: dot_recall@10 value: 0.82 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5877041624403332 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5139126984126984 name: Dot Mrr@10 - type: dot_map@100 value: 0.5216553078498245 name: Dot Map@100 - type: query_active_dims value: 128.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.96875 name: Query Sparsity Ratio - type: corpus_active_dims value: 128.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.96875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 256 type: NanoMSMARCO_256 metrics: - type: dot_accuracy@1 value: 0.42 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.64 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.74 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.82 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.42 name: Dot Precision@1 - type: dot_precision@3 value: 0.21333333333333332 name: Dot Precision@3 - type: dot_precision@5 value: 0.14800000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.08199999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.42 name: Dot Recall@1 - type: dot_recall@3 value: 0.64 name: Dot Recall@3 - type: dot_recall@5 value: 0.74 name: Dot Recall@5 - type: dot_recall@10 value: 0.82 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6246741093433497 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5611904761904761 name: Dot Mrr@10 - type: dot_map@100 value: 0.5700740174857822 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 256 type: NanoBEIR_mean_256 metrics: - type: dot_accuracy@1 value: 0.42 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.64 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.74 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.82 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.42 name: Dot Precision@1 - type: dot_precision@3 value: 0.21333333333333332 name: Dot Precision@3 - type: dot_precision@5 value: 0.14800000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.08199999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.42 name: Dot Recall@1 - type: dot_recall@3 value: 0.64 name: Dot Recall@3 - type: dot_recall@5 value: 0.74 name: Dot Recall@5 - type: dot_recall@10 value: 0.82 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6246741093433497 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5611904761904761 name: Dot Mrr@10 - type: dot_map@100 value: 0.5700740174857822 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoClimateFEVER type: NanoClimateFEVER metrics: - type: dot_accuracy@1 value: 0.36 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.52 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.66 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.8 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.36 name: Dot Precision@1 - type: dot_precision@3 value: 0.2 name: Dot Precision@3 - type: dot_precision@5 value: 0.15600000000000003 name: Dot Precision@5 - type: dot_precision@10 value: 0.11399999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.1573333333333333 name: Dot Recall@1 - type: dot_recall@3 value: 0.24733333333333335 name: Dot Recall@3 - type: dot_recall@5 value: 0.313 name: Dot Recall@5 - type: dot_recall@10 value: 0.43799999999999994 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.35656565827441056 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.479611111111111 name: Dot Mrr@10 - type: dot_map@100 value: 0.27824724841197973 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoDBPedia type: NanoDBPedia metrics: - type: dot_accuracy@1 value: 0.8 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.88 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.92 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.94 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.8 name: Dot Precision@1 - type: dot_precision@3 value: 0.6 name: Dot Precision@3 - type: dot_precision@5 value: 0.5800000000000001 name: Dot Precision@5 - type: dot_precision@10 value: 0.484 name: Dot Precision@10 - type: dot_recall@1 value: 0.09363124545761783 name: Dot Recall@1 - type: dot_recall@3 value: 0.1617934849974966 name: Dot Recall@3 - type: dot_recall@5 value: 0.2269008951554618 name: Dot Recall@5 - type: dot_recall@10 value: 0.33039847394029737 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.607206208169174 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.852 name: Dot Mrr@10 - type: dot_map@100 value: 0.4541106866963296 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoFEVER type: NanoFEVER metrics: - type: dot_accuracy@1 value: 0.9 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.92 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.96 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.96 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.9 name: Dot Precision@1 - type: dot_precision@3 value: 0.32666666666666666 name: Dot Precision@3 - type: dot_precision@5 value: 0.204 name: Dot Precision@5 - type: dot_precision@10 value: 0.102 name: Dot Precision@10 - type: dot_recall@1 value: 0.8466666666666667 name: Dot Recall@1 - type: dot_recall@3 value: 0.8933333333333333 name: Dot Recall@3 - type: dot_recall@5 value: 0.9333333333333332 name: Dot Recall@5 - type: dot_recall@10 value: 0.9333333333333332 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9080731736277194 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.92 name: Dot Mrr@10 - type: dot_map@100 value: 0.8921016869970377 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoFiQA2018 type: NanoFiQA2018 metrics: - type: dot_accuracy@1 value: 0.56 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.7 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.72 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.72 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.56 name: Dot Precision@1 - type: dot_precision@3 value: 0.31999999999999995 name: Dot Precision@3 - type: dot_precision@5 value: 0.236 name: Dot Precision@5 - type: dot_precision@10 value: 0.13 name: Dot Precision@10 - type: dot_recall@1 value: 0.29924603174603176 name: Dot Recall@1 - type: dot_recall@3 value: 0.46729365079365076 name: Dot Recall@3 - type: dot_recall@5 value: 0.5337301587301587 name: Dot Recall@5 - type: dot_recall@10 value: 0.5473412698412699 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.5253203704684166 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.6316666666666666 name: Dot Mrr@10 - type: dot_map@100 value: 0.48003870359394873 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoHotpotQA type: NanoHotpotQA metrics: - type: dot_accuracy@1 value: 0.76 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.9 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.94 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.94 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.76 name: Dot Precision@1 - type: dot_precision@3 value: 0.5 name: Dot Precision@3 - type: dot_precision@5 value: 0.316 name: Dot Precision@5 - type: dot_precision@10 value: 0.17199999999999996 name: Dot Precision@10 - type: dot_recall@1 value: 0.38 name: Dot Recall@1 - type: dot_recall@3 value: 0.75 name: Dot Recall@3 - type: dot_recall@5 value: 0.79 name: Dot Recall@5 - type: dot_recall@10 value: 0.86 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.7910580229553633 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.8333333333333333 name: Dot Mrr@10 - type: dot_map@100 value: 0.7410767962182596 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: dot_accuracy@1 value: 0.42 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.64 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.76 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.82 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.42 name: Dot Precision@1 - type: dot_precision@3 value: 0.21333333333333332 name: Dot Precision@3 - type: dot_precision@5 value: 0.15200000000000002 name: Dot Precision@5 - type: dot_precision@10 value: 0.08199999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.42 name: Dot Recall@1 - type: dot_recall@3 value: 0.64 name: Dot Recall@3 - type: dot_recall@5 value: 0.76 name: Dot Recall@5 - type: dot_recall@10 value: 0.82 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6248295446703863 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5613809523809523 name: Dot Mrr@10 - type: dot_map@100 value: 0.5703445525063172 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoNFCorpus type: NanoNFCorpus metrics: - type: dot_accuracy@1 value: 0.44 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.56 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.6 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.74 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.44 name: Dot Precision@1 - type: dot_precision@3 value: 0.3533333333333333 name: Dot Precision@3 - type: dot_precision@5 value: 0.32 name: Dot Precision@5 - type: dot_precision@10 value: 0.272 name: Dot Precision@10 - type: dot_recall@1 value: 0.03517605061787946 name: Dot Recall@1 - type: dot_recall@3 value: 0.07646787868408336 name: Dot Recall@3 - type: dot_recall@5 value: 0.11598401724221898 name: Dot Recall@5 - type: dot_recall@10 value: 0.15931797747485815 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.33447068554509884 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5147698412698413 name: Dot Mrr@10 - type: dot_map@100 value: 0.15438429278142912 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: dot_accuracy@1 value: 0.5 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.72 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.76 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.84 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.5 name: Dot Precision@1 - type: dot_precision@3 value: 0.24666666666666667 name: Dot Precision@3 - type: dot_precision@5 value: 0.16 name: Dot Precision@5 - type: dot_precision@10 value: 0.088 name: Dot Precision@10 - type: dot_recall@1 value: 0.48 name: Dot Recall@1 - type: dot_recall@3 value: 0.67 name: Dot Recall@3 - type: dot_recall@5 value: 0.72 name: Dot Recall@5 - type: dot_recall@10 value: 0.79 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6479593376479322 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.6163333333333333 name: Dot Mrr@10 - type: dot_map@100 value: 0.6035174820443362 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoQuoraRetrieval type: NanoQuoraRetrieval metrics: - type: dot_accuracy@1 value: 0.92 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.96 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 1.0 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.92 name: Dot Precision@1 - type: dot_precision@3 value: 0.3999999999999999 name: Dot Precision@3 - type: dot_precision@5 value: 0.26799999999999996 name: Dot Precision@5 - type: dot_precision@10 value: 0.13799999999999998 name: Dot Precision@10 - type: dot_recall@1 value: 0.7973333333333332 name: Dot Recall@1 - type: dot_recall@3 value: 0.922 name: Dot Recall@3 - type: dot_recall@5 value: 0.9893333333333334 name: Dot Recall@5 - type: dot_recall@10 value: 0.996 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9493554410777213 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9456666666666667 name: Dot Mrr@10 - type: dot_map@100 value: 0.9286237373737373 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoSCIDOCS type: NanoSCIDOCS metrics: - type: dot_accuracy@1 value: 0.56 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.76 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.78 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.88 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.56 name: Dot Precision@1 - type: dot_precision@3 value: 0.4 name: Dot Precision@3 - type: dot_precision@5 value: 0.29200000000000004 name: Dot Precision@5 - type: dot_precision@10 value: 0.20999999999999996 name: Dot Precision@10 - type: dot_recall@1 value: 0.11866666666666668 name: Dot Recall@1 - type: dot_recall@3 value: 0.24966666666666665 name: Dot Recall@3 - type: dot_recall@5 value: 0.30266666666666675 name: Dot Recall@5 - type: dot_recall@10 value: 0.4316666666666666 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.4265505670611979 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.6682142857142856 name: Dot Mrr@10 - type: dot_map@100 value: 0.3385559757581844 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoArguAna type: NanoArguAna metrics: - type: dot_accuracy@1 value: 0.36 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.78 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.84 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.94 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.36 name: Dot Precision@1 - type: dot_precision@3 value: 0.26 name: Dot Precision@3 - type: dot_precision@5 value: 0.16799999999999998 name: Dot Precision@5 - type: dot_precision@10 value: 0.09399999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.36 name: Dot Recall@1 - type: dot_recall@3 value: 0.78 name: Dot Recall@3 - type: dot_recall@5 value: 0.84 name: Dot Recall@5 - type: dot_recall@10 value: 0.94 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6674878961390456 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5782460317460317 name: Dot Mrr@10 - type: dot_map@100 value: 0.5802628384687207 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoSciFact type: NanoSciFact metrics: - type: dot_accuracy@1 value: 0.7 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.8 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.82 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.88 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.7 name: Dot Precision@1 - type: dot_precision@3 value: 0.2866666666666667 name: Dot Precision@3 - type: dot_precision@5 value: 0.184 name: Dot Precision@5 - type: dot_precision@10 value: 0.1 name: Dot Precision@10 - type: dot_recall@1 value: 0.665 name: Dot Recall@1 - type: dot_recall@3 value: 0.79 name: Dot Recall@3 - type: dot_recall@5 value: 0.81 name: Dot Recall@5 - type: dot_recall@10 value: 0.88 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.7776207541845983 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.7519444444444445 name: Dot Mrr@10 - type: dot_map@100 value: 0.742050969601677 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoTouche2020 type: NanoTouche2020 metrics: - type: dot_accuracy@1 value: 0.5306122448979592 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.8367346938775511 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.8979591836734694 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.9795918367346939 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.5306122448979592 name: Dot Precision@1 - type: dot_precision@3 value: 0.5306122448979591 name: Dot Precision@3 - type: dot_precision@5 value: 0.5142857142857142 name: Dot Precision@5 - type: dot_precision@10 value: 0.43469387755102035 name: Dot Precision@10 - type: dot_recall@1 value: 0.03672756127909814 name: Dot Recall@1 - type: dot_recall@3 value: 0.11122615754561782 name: Dot Recall@3 - type: dot_recall@5 value: 0.17495428374251296 name: Dot Recall@5 - type: dot_recall@10 value: 0.28731694149491666 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.47801832046439025 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.7052073210236476 name: Dot Mrr@10 - type: dot_map@100 value: 0.3658602219028105 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: dot_accuracy@1 value: 0.6008163265306123 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.7674411302982732 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.8198430141287284 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.8799686028257457 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.6008163265306123 name: Dot Precision@1 - type: dot_precision@3 value: 0.3567137624280482 name: Dot Precision@3 - type: dot_precision@5 value: 0.2730989010989011 name: Dot Precision@5 - type: dot_precision@10 value: 0.18620722135007847 name: Dot Precision@10 - type: dot_recall@1 value: 0.3607523760846636 name: Dot Recall@1 - type: dot_recall@3 value: 0.5199318850272447 name: Dot Recall@3 - type: dot_recall@5 value: 0.5776848221695142 name: Dot Recall@5 - type: dot_recall@10 value: 0.6471826663654878 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6226550754065734 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.6967979990531011 name: Dot Mrr@10 - type: dot_map@100 value: 0.5483980917195976 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio --- # Sparse CSR model trained on Natural Questions This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval. ## Model Details ### Model Description - **Model Type:** CSR Sparse Encoder - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions) - **Similarity Function:** Dot Product - **Training Dataset:** - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder) ### Full Model Architecture ``` SparseEncoder( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SparseEncoder # Download from the 🤗 Hub model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-updated-reconstruction-4") # Run inference queries = [ "who is cornelius in the book of acts", ] documents = [ 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.', "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]", 'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 4096] [3, 4096] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[111.0676, 23.1031, 22.6751]]) ``` ## Evaluation ### Metrics #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_8` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 8 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.16 | | dot_accuracy@3 | 0.2 | | dot_accuracy@5 | 0.28 | | dot_accuracy@10 | 0.4 | | dot_precision@1 | 0.16 | | dot_precision@3 | 0.0667 | | dot_precision@5 | 0.056 | | dot_precision@10 | 0.04 | | dot_recall@1 | 0.16 | | dot_recall@3 | 0.2 | | dot_recall@5 | 0.28 | | dot_recall@10 | 0.4 | | **dot_ndcg@10** | **0.2553** | | dot_mrr@10 | 0.2125 | | dot_map@100 | 0.2276 | | query_active_dims | 8.0 | | query_sparsity_ratio | 0.998 | | corpus_active_dims | 8.0 | | corpus_sparsity_ratio | 0.998 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_8` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 8 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.16 | | dot_accuracy@3 | 0.2 | | dot_accuracy@5 | 0.28 | | dot_accuracy@10 | 0.4 | | dot_precision@1 | 0.16 | | dot_precision@3 | 0.0667 | | dot_precision@5 | 0.056 | | dot_precision@10 | 0.04 | | dot_recall@1 | 0.16 | | dot_recall@3 | 0.2 | | dot_recall@5 | 0.28 | | dot_recall@10 | 0.4 | | **dot_ndcg@10** | **0.2553** | | dot_mrr@10 | 0.2125 | | dot_map@100 | 0.2276 | | query_active_dims | 8.0 | | query_sparsity_ratio | 0.998 | | corpus_active_dims | 8.0 | | corpus_sparsity_ratio | 0.998 | #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_16` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 16 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.24 | | dot_accuracy@3 | 0.38 | | dot_accuracy@5 | 0.5 | | dot_accuracy@10 | 0.58 | | dot_precision@1 | 0.24 | | dot_precision@3 | 0.1267 | | dot_precision@5 | 0.1 | | dot_precision@10 | 0.058 | | dot_recall@1 | 0.24 | | dot_recall@3 | 0.38 | | dot_recall@5 | 0.5 | | dot_recall@10 | 0.58 | | **dot_ndcg@10** | **0.3971** | | dot_mrr@10 | 0.3401 | | dot_map@100 | 0.353 | | query_active_dims | 16.0 | | query_sparsity_ratio | 0.9961 | | corpus_active_dims | 16.0 | | corpus_sparsity_ratio | 0.9961 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_16` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 16 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.24 | | dot_accuracy@3 | 0.38 | | dot_accuracy@5 | 0.5 | | dot_accuracy@10 | 0.58 | | dot_precision@1 | 0.24 | | dot_precision@3 | 0.1267 | | dot_precision@5 | 0.1 | | dot_precision@10 | 0.058 | | dot_recall@1 | 0.24 | | dot_recall@3 | 0.38 | | dot_recall@5 | 0.5 | | dot_recall@10 | 0.58 | | **dot_ndcg@10** | **0.3971** | | dot_mrr@10 | 0.3401 | | dot_map@100 | 0.353 | | query_active_dims | 16.0 | | query_sparsity_ratio | 0.9961 | | corpus_active_dims | 16.0 | | corpus_sparsity_ratio | 0.9961 | #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_32` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 32 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.3 | | dot_accuracy@3 | 0.46 | | dot_accuracy@5 | 0.62 | | dot_accuracy@10 | 0.7 | | dot_precision@1 | 0.3 | | dot_precision@3 | 0.1533 | | dot_precision@5 | 0.124 | | dot_precision@10 | 0.07 | | dot_recall@1 | 0.3 | | dot_recall@3 | 0.46 | | dot_recall@5 | 0.62 | | dot_recall@10 | 0.7 | | **dot_ndcg@10** | **0.4873** | | dot_mrr@10 | 0.4206 | | dot_map@100 | 0.4326 | | query_active_dims | 32.0 | | query_sparsity_ratio | 0.9922 | | corpus_active_dims | 32.0 | | corpus_sparsity_ratio | 0.9922 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_32` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 32 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.3 | | dot_accuracy@3 | 0.46 | | dot_accuracy@5 | 0.62 | | dot_accuracy@10 | 0.7 | | dot_precision@1 | 0.3 | | dot_precision@3 | 0.1533 | | dot_precision@5 | 0.124 | | dot_precision@10 | 0.07 | | dot_recall@1 | 0.3 | | dot_recall@3 | 0.46 | | dot_recall@5 | 0.62 | | dot_recall@10 | 0.7 | | **dot_ndcg@10** | **0.4873** | | dot_mrr@10 | 0.4206 | | dot_map@100 | 0.4326 | | query_active_dims | 32.0 | | query_sparsity_ratio | 0.9922 | | corpus_active_dims | 32.0 | | corpus_sparsity_ratio | 0.9922 | #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_64` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 64 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.42 | | dot_accuracy@3 | 0.6 | | dot_accuracy@5 | 0.68 | | dot_accuracy@10 | 0.78 | | dot_precision@1 | 0.42 | | dot_precision@3 | 0.2 | | dot_precision@5 | 0.136 | | dot_precision@10 | 0.078 | | dot_recall@1 | 0.42 | | dot_recall@3 | 0.6 | | dot_recall@5 | 0.68 | | dot_recall@10 | 0.78 | | **dot_ndcg@10** | **0.5911** | | dot_mrr@10 | 0.5317 | | dot_map@100 | 0.5406 | | query_active_dims | 64.0 | | query_sparsity_ratio | 0.9844 | | corpus_active_dims | 64.0 | | corpus_sparsity_ratio | 0.9844 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_64` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 64 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.42 | | dot_accuracy@3 | 0.6 | | dot_accuracy@5 | 0.68 | | dot_accuracy@10 | 0.78 | | dot_precision@1 | 0.42 | | dot_precision@3 | 0.2 | | dot_precision@5 | 0.136 | | dot_precision@10 | 0.078 | | dot_recall@1 | 0.42 | | dot_recall@3 | 0.6 | | dot_recall@5 | 0.68 | | dot_recall@10 | 0.78 | | **dot_ndcg@10** | **0.5911** | | dot_mrr@10 | 0.5317 | | dot_map@100 | 0.5406 | | query_active_dims | 64.0 | | query_sparsity_ratio | 0.9844 | | corpus_active_dims | 64.0 | | corpus_sparsity_ratio | 0.9844 | #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_128` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 128 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.36 | | dot_accuracy@3 | 0.64 | | dot_accuracy@5 | 0.72 | | dot_accuracy@10 | 0.82 | | dot_precision@1 | 0.36 | | dot_precision@3 | 0.2133 | | dot_precision@5 | 0.144 | | dot_precision@10 | 0.082 | | dot_recall@1 | 0.36 | | dot_recall@3 | 0.64 | | dot_recall@5 | 0.72 | | dot_recall@10 | 0.82 | | **dot_ndcg@10** | **0.5877** | | dot_mrr@10 | 0.5139 | | dot_map@100 | 0.5217 | | query_active_dims | 128.0 | | query_sparsity_ratio | 0.9688 | | corpus_active_dims | 128.0 | | corpus_sparsity_ratio | 0.9688 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_128` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 128 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.36 | | dot_accuracy@3 | 0.64 | | dot_accuracy@5 | 0.72 | | dot_accuracy@10 | 0.82 | | dot_precision@1 | 0.36 | | dot_precision@3 | 0.2133 | | dot_precision@5 | 0.144 | | dot_precision@10 | 0.082 | | dot_recall@1 | 0.36 | | dot_recall@3 | 0.64 | | dot_recall@5 | 0.72 | | dot_recall@10 | 0.82 | | **dot_ndcg@10** | **0.5877** | | dot_mrr@10 | 0.5139 | | dot_map@100 | 0.5217 | | query_active_dims | 128.0 | | query_sparsity_ratio | 0.9688 | | corpus_active_dims | 128.0 | | corpus_sparsity_ratio | 0.9688 | #### Sparse Information Retrieval * Dataset: `NanoMSMARCO_256` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 256 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.42 | | dot_accuracy@3 | 0.64 | | dot_accuracy@5 | 0.74 | | dot_accuracy@10 | 0.82 | | dot_precision@1 | 0.42 | | dot_precision@3 | 0.2133 | | dot_precision@5 | 0.148 | | dot_precision@10 | 0.082 | | dot_recall@1 | 0.42 | | dot_recall@3 | 0.64 | | dot_recall@5 | 0.74 | | dot_recall@10 | 0.82 | | **dot_ndcg@10** | **0.6247** | | dot_mrr@10 | 0.5612 | | dot_map@100 | 0.5701 | | query_active_dims | 256.0 | | query_sparsity_ratio | 0.9375 | | corpus_active_dims | 256.0 | | corpus_sparsity_ratio | 0.9375 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_256` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco" ], "max_active_dims": 256 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.42 | | dot_accuracy@3 | 0.64 | | dot_accuracy@5 | 0.74 | | dot_accuracy@10 | 0.82 | | dot_precision@1 | 0.42 | | dot_precision@3 | 0.2133 | | dot_precision@5 | 0.148 | | dot_precision@10 | 0.082 | | dot_recall@1 | 0.42 | | dot_recall@3 | 0.64 | | dot_recall@5 | 0.74 | | dot_recall@10 | 0.82 | | **dot_ndcg@10** | **0.6247** | | dot_mrr@10 | 0.5612 | | dot_map@100 | 0.5701 | | query_active_dims | 256.0 | | query_sparsity_ratio | 0.9375 | | corpus_active_dims | 256.0 | | corpus_sparsity_ratio | 0.9375 | #### Sparse Information Retrieval * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020` * Evaluated with [SparseInformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 | |:----------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:----------|:-------------------|:------------|:------------|:------------|:---------------| | dot_accuracy@1 | 0.36 | 0.8 | 0.9 | 0.56 | 0.76 | 0.42 | 0.44 | 0.5 | 0.92 | 0.56 | 0.36 | 0.7 | 0.5306 | | dot_accuracy@3 | 0.52 | 0.88 | 0.92 | 0.7 | 0.9 | 0.64 | 0.56 | 0.72 | 0.96 | 0.76 | 0.78 | 0.8 | 0.8367 | | dot_accuracy@5 | 0.66 | 0.92 | 0.96 | 0.72 | 0.94 | 0.76 | 0.6 | 0.76 | 1.0 | 0.78 | 0.84 | 0.82 | 0.898 | | dot_accuracy@10 | 0.8 | 0.94 | 0.96 | 0.72 | 0.94 | 0.82 | 0.74 | 0.84 | 1.0 | 0.88 | 0.94 | 0.88 | 0.9796 | | dot_precision@1 | 0.36 | 0.8 | 0.9 | 0.56 | 0.76 | 0.42 | 0.44 | 0.5 | 0.92 | 0.56 | 0.36 | 0.7 | 0.5306 | | dot_precision@3 | 0.2 | 0.6 | 0.3267 | 0.32 | 0.5 | 0.2133 | 0.3533 | 0.2467 | 0.4 | 0.4 | 0.26 | 0.2867 | 0.5306 | | dot_precision@5 | 0.156 | 0.58 | 0.204 | 0.236 | 0.316 | 0.152 | 0.32 | 0.16 | 0.268 | 0.292 | 0.168 | 0.184 | 0.5143 | | dot_precision@10 | 0.114 | 0.484 | 0.102 | 0.13 | 0.172 | 0.082 | 0.272 | 0.088 | 0.138 | 0.21 | 0.094 | 0.1 | 0.4347 | | dot_recall@1 | 0.1573 | 0.0936 | 0.8467 | 0.2992 | 0.38 | 0.42 | 0.0352 | 0.48 | 0.7973 | 0.1187 | 0.36 | 0.665 | 0.0367 | | dot_recall@3 | 0.2473 | 0.1618 | 0.8933 | 0.4673 | 0.75 | 0.64 | 0.0765 | 0.67 | 0.922 | 0.2497 | 0.78 | 0.79 | 0.1112 | | dot_recall@5 | 0.313 | 0.2269 | 0.9333 | 0.5337 | 0.79 | 0.76 | 0.116 | 0.72 | 0.9893 | 0.3027 | 0.84 | 0.81 | 0.175 | | dot_recall@10 | 0.438 | 0.3304 | 0.9333 | 0.5473 | 0.86 | 0.82 | 0.1593 | 0.79 | 0.996 | 0.4317 | 0.94 | 0.88 | 0.2873 | | **dot_ndcg@10** | **0.3566** | **0.6072** | **0.9081** | **0.5253** | **0.7911** | **0.6248** | **0.3345** | **0.648** | **0.9494** | **0.4266** | **0.6675** | **0.7776** | **0.478** | | dot_mrr@10 | 0.4796 | 0.852 | 0.92 | 0.6317 | 0.8333 | 0.5614 | 0.5148 | 0.6163 | 0.9457 | 0.6682 | 0.5782 | 0.7519 | 0.7052 | | dot_map@100 | 0.2782 | 0.4541 | 0.8921 | 0.48 | 0.7411 | 0.5703 | 0.1544 | 0.6035 | 0.9286 | 0.3386 | 0.5803 | 0.7421 | 0.3659 | | query_active_dims | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | | query_sparsity_ratio | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | | corpus_active_dims | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | | corpus_sparsity_ratio | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [SparseNanoBEIREvaluator](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.6008 | | dot_accuracy@3 | 0.7674 | | dot_accuracy@5 | 0.8198 | | dot_accuracy@10 | 0.88 | | dot_precision@1 | 0.6008 | | dot_precision@3 | 0.3567 | | dot_precision@5 | 0.2731 | | dot_precision@10 | 0.1862 | | dot_recall@1 | 0.3608 | | dot_recall@3 | 0.5199 | | dot_recall@5 | 0.5777 | | dot_recall@10 | 0.6472 | | **dot_ndcg@10** | **0.6227** | | dot_mrr@10 | 0.6968 | | dot_map@100 | 0.5484 | | query_active_dims | 256.0 | | query_sparsity_ratio | 0.9375 | | corpus_active_dims | 256.0 | | corpus_sparsity_ratio | 0.9375 | ## Training Details ### Training Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 99,000 training samples * Columns: query and answer * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | query | answer | |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | who played the father in papa don't preach | Alex McArthur Alex McArthur (born March 6, 1957) is an American actor. | | where was the location of the battle of hastings | Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory. | | how many puppies can a dog give birth to | Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22] | * Loss: [CSRLoss](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 3.0, "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')" } ``` ### Evaluation Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 1,000 evaluation samples * Columns: query and answer * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | query | answer | |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | where is the tiber river located in italy | Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks. | | what kind of car does jay gatsby drive | Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry. | | who sings if i can dream about you | I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1] | * Loss: [CSRLoss](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 3.0, "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 4e-05 - `num_train_epochs`: 1 - `bf16`: True - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 4e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_8_dot_ndcg@10 | NanoBEIR_mean_8_dot_ndcg@10 | NanoMSMARCO_16_dot_ndcg@10 | NanoBEIR_mean_16_dot_ndcg@10 | NanoMSMARCO_32_dot_ndcg@10 | NanoBEIR_mean_32_dot_ndcg@10 | NanoMSMARCO_64_dot_ndcg@10 | NanoBEIR_mean_64_dot_ndcg@10 | NanoMSMARCO_128_dot_ndcg@10 | NanoBEIR_mean_128_dot_ndcg@10 | NanoMSMARCO_256_dot_ndcg@10 | NanoBEIR_mean_256_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | |:----------:|:--------:|:-------------:|:---------------:|:-------------------------:|:---------------------------:|:--------------------------:|:----------------------------:|:--------------------------:|:----------------------------:|:--------------------------:|:----------------------------:|:---------------------------:|:-----------------------------:|:---------------------------:|:-----------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:-----------------------:|:------------------------:|:------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|:-------------------------:| | -1 | -1 | - | - | 0.2447 | 0.2447 | 0.3677 | 0.3677 | 0.5086 | 0.5086 | 0.5304 | 0.5304 | 0.6134 | 0.6134 | 0.5961 | 0.5961 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0646 | 100 | 0.5048 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1293 | 200 | 0.5017 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1939 | 300 | 0.531 | 0.6279 | 0.2125 | 0.2125 | 0.4075 | 0.4075 | 0.4686 | 0.4686 | 0.5701 | 0.5701 | 0.6086 | 0.6086 | 0.5877 | 0.5877 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2586 | 400 | 0.4992 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3232 | 500 | 0.5574 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3878 | 600 | 0.5821 | 0.6178 | 0.2312 | 0.2312 | 0.4248 | 0.4248 | 0.4239 | 0.4239 | 0.5142 | 0.5142 | 0.6034 | 0.6034 | 0.6177 | 0.6177 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4525 | 700 | 0.5632 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5171 | 800 | 0.5786 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5818 | 900 | 0.5329 | 0.5743 | 0.2662 | 0.2662 | 0.4468 | 0.4468 | 0.4976 | 0.4976 | 0.5630 | 0.5630 | 0.6279 | 0.6279 | 0.6240 | 0.6240 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6464 | 1000 | 0.5409 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7111 | 1100 | 0.4995 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7757 | 1200 | 0.5269 | 0.5169 | 0.2838 | 0.2838 | 0.3874 | 0.3874 | 0.4738 | 0.4738 | 0.5892 | 0.5892 | 0.5798 | 0.5798 | 0.5962 | 0.5962 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8403 | 1300 | 0.5553 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9050 | 1400 | 0.45 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | **0.9696** | **1500** | **0.4551** | **0.5188** | **0.2553** | **0.2553** | **0.3971** | **0.3971** | **0.4873** | **0.4873** | **0.5911** | **0.5911** | **0.5877** | **0.5877** | **0.6247** | **0.6247** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | | -1 | -1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.3566 | 0.6072 | 0.9081 | 0.5253 | 0.7911 | 0.6248 | 0.3345 | 0.6480 | 0.9494 | 0.4266 | 0.6675 | 0.7776 | 0.4780 | 0.6227 | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.122 kWh - **Carbon Emitted**: 0.047 kg of CO2 - **Hours Used**: 0.373 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 4.2.0.dev0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.1 - Datasets: 2.21.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CSRLoss ```bibtex @misc{wen2025matryoshkarevisitingsparsecoding, title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation}, author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You}, year={2025}, eprint={2503.01776}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.01776}, } ``` #### SparseMultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```