File size: 14,383 Bytes
d10f6aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import argparse
import logging
import traceback
from collections import defaultdict
from collections.abc import Iterable
from enum import Enum, auto
import torch
from datasets import load_dataset
from torch import Tensor
from sentence_transformers import (
SentenceTransformer,
SentenceTransformerModelCardData,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
)
from sentence_transformers.evaluation import InformationRetrievalEvaluator, NanoBEIREvaluator, SequentialEvaluator
from sentence_transformers.losses import (
CachedMultipleNegativesRankingLoss,
DistillKLDivLoss,
MarginMSELoss,
MultipleNegativesRankingLoss,
)
from sentence_transformers.training_args import BatchSamplers
from sentence_transformers.util import pairwise_dot_score
# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
class LossType(Enum):
MNRL = auto()
CMNRL = auto()
MARGIN_MSE = auto()
KLDIV = auto()
MARGIN_MSE_KLDIV = auto()
def __str__(self):
return self.name.lower()
class MarginMSEKLDivLoss(torch.nn.Module):
def __init__(
self,
model: SentenceTransformer,
similarity_fct=pairwise_dot_score,
temperature=1.0,
margin_mse_weight=1.0,
kldiv_weight=1.0,
) -> None:
super().__init__()
self.model = model
self.similarity_fct = similarity_fct
self.temperature = temperature
self.margin_mse_weight = margin_mse_weight
self.kldiv_weight = kldiv_weight
self.margin_mse_loss = MarginMSELoss(self.model, similarity_fct=self.similarity_fct)
self.kl_div_loss = DistillKLDivLoss(
self.model, similarity_fct=self.similarity_fct, temperature=self.temperature
)
def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor:
embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features]
return self.compute_loss_from_embeddings(embeddings, labels)
def compute_loss_from_embeddings(self, embeddings: list[Tensor], labels: Tensor) -> Tensor:
return {
"margin_mse": self.margin_mse_loss.compute_loss_from_embeddings(embeddings, labels) * self.margin_mse_weight,
"kl_div": self.kl_div_loss.compute_loss_from_embeddings(embeddings, labels) * self.kldiv_weight
}
def main(
model_name_or_path: str,
loss_type: LossType,
kldiv_temperature: float,
margin_mse_weight: float,
kldiv_weight: float,
mini_batch_size: int,
mnrl_scale: float,
num_train_epochs: int,
per_device_batch_size: int,
learning_rate: float,
warmup_ratio: float,
fp16: bool,
bf16: bool,
eval_save_steps: int,
save_total_limit: int,
logging_steps: int,
evaluator_batch_size: int,
quick: bool,
):
# 1. Load a model with prompts to finetune with 2. (Optional) model card data
model = SentenceTransformer(
model_name_or_path,
model_card_data=SentenceTransformerModelCardData(
language="en",
license="apache-2.0",
model_name=f"{model_name_or_path} trained on RLHN MS MARCO using {loss_type}",
),
prompts={ # prompts with "query" and "document" keys are automatically used in evaluation via model.encode_query/model.encode_document
"query": "query: ",
"document": "document: ",
},
)
# 3. Load a dataset to finetune on
# TODO: Eventually we want this:
"""
train_dataset = load_dataset("mixedbread-ai/rlhn-680k-msmarco-7negs", split="train")
eval_dataset = load_dataset("mixedbread-ai/rlhn-680k-msmarco-7negs", split="eval")
test_dataset = load_dataset("mixedbread-ai/rlhn-680k-msmarco-7negs", split="test")
train_dataset = train_dataset.select_columns([column for column in train_dataset.column_names if column != 'logits'])
eval_dataset = eval_dataset.select_columns([column for column in eval_dataset.column_names if column != 'logits'])
test_dataset = test_dataset.select_columns([column for column in test_dataset.column_names if column != 'logits'])
"""
# But for now we do it manually:
dataset = load_dataset("mixedbread-ai/rlhn-680k-msmarco-7negs-scored", split="train")
dataset = dataset.select_columns([column for column in dataset.column_names if column != "logits"])
split_dataset = dataset.train_test_split(test_size=3_000)
dataset = split_dataset["train"]
eval_dataset = split_dataset["test"]
split_dataset = dataset.train_test_split(test_size=10_000)
train_dataset = split_dataset["train"]
test_dataset = split_dataset["test"]
# 4. Define a loss function
batch_sampler = BatchSamplers.BATCH_SAMPLER
gather_across_devices = torch.distributed.is_initialized() if torch.distributed.is_available() else False
if loss_type == LossType.MNRL:
loss = MultipleNegativesRankingLoss(model, scale=mnrl_scale, gather_across_devices=gather_across_devices)
batch_sampler = BatchSamplers.NO_DUPLICATES
elif loss_type == LossType.CMNRL:
loss = CachedMultipleNegativesRankingLoss(
model, scale=mnrl_scale, mini_batch_size=mini_batch_size, gather_across_devices=gather_across_devices
)
batch_sampler = BatchSamplers.NO_DUPLICATES
elif loss_type == LossType.MARGIN_MSE:
loss = MarginMSELoss(model)
elif loss_type == LossType.KLDIV:
loss = DistillKLDivLoss(model, temperature=kldiv_temperature)
elif loss_type == LossType.MARGIN_MSE_KLDIV:
loss = MarginMSEKLDivLoss(
model, temperature=kldiv_temperature, margin_mse_weight=margin_mse_weight, kldiv_weight=kldiv_weight
)
# 5. (Optional) Specify training arguments
short_model_name_or_path = model_name_or_path.split("/")[-1]
run_name = f"{short_model_name_or_path}-{loss_type}-lr{learning_rate}-bs{per_device_batch_size}"
column_names_to_prompts = {
column_name: "query" if column_name == "query" else "document"
for column_name in dataset.column_names
if column_name != "scores"
}
args = SentenceTransformerTrainingArguments(
# Required parameter:
output_dir=f"models/{run_name}",
# Optional training parameters:
num_train_epochs=0.05 if quick else num_train_epochs,
per_device_train_batch_size=per_device_batch_size,
per_device_eval_batch_size=per_device_batch_size,
learning_rate=learning_rate,
warmup_ratio=warmup_ratio,
fp16=fp16, # Set to False if you get an error that your GPU can't run on FP16
bf16=bf16, # Set to True if you have a GPU that supports BF16
batch_sampler=batch_sampler, # (C)MNRL benefits from no duplicate samples in a batch
prompts=column_names_to_prompts, # Let's incorporate prompts for a ~1% improvement
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=eval_save_steps,
save_strategy="steps",
save_steps=eval_save_steps,
save_total_limit=save_total_limit,
logging_steps=logging_steps,
run_name=run_name,
)
# 6. (Optional) Create evaluator & evaluate the base model
nano_beir_evaluator = NanoBEIREvaluator(
dataset_names=["msmarco", "nfcorpus", "nq"],
batch_size=evaluator_batch_size,
query_prompts=model.prompts["query"], # This will be done automatically starting from the next version
corpus_prompts=model.prompts["document"], # This will be done automatically starting from the next version
)
eval_queries = {}
eval_documents = {}
eval_relevant_docs = defaultdict(set)
for query, positive in zip(eval_dataset["query"], eval_dataset["positive"]):
query_id = len(eval_queries)
eval_queries[query_id] = query
document_id = len(eval_documents)
eval_documents[document_id] = positive
eval_relevant_docs[query_id].add(document_id)
for column_name in test_dataset.column_names:
if column_name.startswith("negative"):
for negative in test_dataset[column_name]:
document_id = len(eval_documents)
eval_documents[document_id] = negative
eval_ir_evaluator = InformationRetrievalEvaluator(
queries=eval_queries,
corpus=eval_documents,
relevant_docs=eval_relevant_docs,
name="rlhn-msmarco-eval",
batch_size=evaluator_batch_size,
query_prompt_name="query", # This will be done automatically starting from the next version
corpus_prompt_name="document", # This will be done automatically starting from the next version
)
eval_evaluator = SequentialEvaluator([nano_beir_evaluator, eval_ir_evaluator])
if not quick:
eval_evaluator(model)
test_queries = {}
test_documents = {}
test_relevant_docs = defaultdict(set)
for query, positive in zip(test_dataset["query"], test_dataset["positive"]):
query_id = len(test_queries)
test_queries[query_id] = query
document_id = len(test_documents)
test_documents[document_id] = positive
test_relevant_docs[query_id].add(document_id)
for column_name in test_dataset.column_names:
if column_name.startswith("negative"):
for negative in test_dataset[column_name]:
document_id = len(test_documents)
test_documents[document_id] = negative
test_ir_evaluator = InformationRetrievalEvaluator(
queries=test_queries,
corpus=test_documents,
relevant_docs=test_relevant_docs,
name="rlhn-msmarco-test",
batch_size=evaluator_batch_size,
query_prompt_name="query", # This will be done automatically starting from the next version
corpus_prompt_name="document", # This will be done automatically starting from the next version
)
test_evaluator = SequentialEvaluator([test_ir_evaluator])
if not quick:
test_evaluator(model)
# 7. Create a trainer & train
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
evaluator=eval_evaluator,
)
trainer.train()
# (Optional) Evaluate the trained model on the eval & test sets again
eval_evaluator(model)
test_evaluator(model)
# 8. Save the final model
final_output_dir = f"models/{run_name}/final"
model.save_pretrained(final_output_dir)
# 9. (Optional) save the model to the Hugging Face Hub!
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
try:
model.push_to_hub(run_name, private=True)
except Exception:
logging.error(
f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
f"and saving it using `model.push_to_hub('{run_name}')`."
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train a sentence transformer model on RLHN MS MARCO dataset")
parser.add_argument(
"--model_name_or_path", type=str, default="jhu-clsp/ettin-encoder-17m", help="Model name or path to load"
)
parser.add_argument(
"--loss_type",
type=lambda x: LossType[x.upper()],
default=LossType.CMNRL,
choices=list(LossType),
help="Loss function to use",
)
parser.add_argument("--kldiv_temperature", type=float, default=1.0, help="Temperature for KL divergence loss")
parser.add_argument("--margin_mse_weight", type=float, default=1.0, help="Weight for margin MSE in combined loss")
parser.add_argument("--kldiv_weight", type=float, default=1.0, help="Weight for KL divergence in combined loss")
parser.add_argument("--mini_batch_size", type=int, default=16, help="Mini-batch size for cached MNRL")
parser.add_argument("--mnrl_scale", type=float, default=20.0, help="Scale factor for MNRL loss")
parser.add_argument("--num_train_epochs", type=int, default=1, help="Number of training epochs")
parser.add_argument("--per_device_batch_size", type=int, default=128, help="Batch size per device")
parser.add_argument("--evaluator_batch_size", type=int, default=32, help="Batch size for the evaluators")
parser.add_argument("--learning_rate", type=float, default=2e-5, help="Learning rate")
parser.add_argument("--warmup_ratio", type=float, default=0.1, help="Ratio of warmup steps")
parser.add_argument("--fp16", action="store_true", help="Use FP16 precision")
parser.add_argument("--bf16", action="store_true", default=True, help="Use BF16 precision")
parser.add_argument(
"--eval_save_steps",
type=float,
default=0.2,
help="Steps between evaluations and checkpoint saves. If less than 1, "
"it will be treated as a fraction of the total steps.",
)
parser.add_argument("--save_total_limit", type=int, default=3, help="Maximum number of checkpoints to keep")
parser.add_argument("--logging_steps", type=int, default=100, help="Steps between logging")
parser.add_argument("--quick", action="store_true", help="Run with only 5% of training data for quick testing")
args = parser.parse_args()
main(
model_name_or_path=args.model_name_or_path,
loss_type=args.loss_type,
kldiv_temperature=args.kldiv_temperature,
margin_mse_weight=args.margin_mse_weight,
kldiv_weight=args.kldiv_weight,
mini_batch_size=args.mini_batch_size,
mnrl_scale=args.mnrl_scale,
num_train_epochs=args.num_train_epochs,
per_device_batch_size=args.per_device_batch_size,
learning_rate=args.learning_rate,
warmup_ratio=args.warmup_ratio,
fp16=args.fp16,
bf16=args.bf16,
eval_save_steps=args.eval_save_steps,
save_total_limit=args.save_total_limit,
logging_steps=args.logging_steps,
evaluator_batch_size=args.evaluator_batch_size,
quick=args.quick,
)
|