File size: 7,866 Bytes
61b7aa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---

base_model: nomic-ai/modernbert-embed-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'green might want to hang onto that ski mask , as robbery may be the only

    way to pay for his next project . '
- text: 'even horror fans will most likely not find what they ''re seeking with trouble

    every day ; the movie lacks both thrills and humor . '
- text: 'the acting , costumes , music , cinematography and sound are all astounding

    given the production ''s austere locales . '
- text: 'byler reveals his characters in a way that intrigues and even fascinates

    us , and he never reduces the situation to simple melodrama . '
- text: 'a sequence of ridiculous shoot - ''em - up scenes . '
inference: true
co2_eq_emissions:
  emissions: 3.166930971100679
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.023
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SetFit with nomic-ai/modernbert-embed-base
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.8976683937823834
      name: Accuracy
---


# SetFit with nomic-ai/modernbert-embed-base

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 8192 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label    | Examples                                                                                                                                                                                    |
|:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| negative | <ul><li>'hollow tribute '</li><li>'accompanied by the sketchiest of captions . '</li><li>"take a complete moron to foul up a screen adaptation of oscar wilde 's classic satire "</li></ul> |
| positive | <ul><li>'smart and newfangled '</li><li>'wise and powerful '</li><li>'while the importance of being earnest offers opportunities for occasional smiles and chuckles '</li></ul>             |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8977   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash

pip install setfit

```

Then you can load this model and run inference.

```python

from setfit import SetFitModel



# Download from the 🤗 Hub

model = SetFitModel.from_pretrained("tomaarsen/modernbert-embed-base-sst2")

# Run inference

preds = model("a sequence of ridiculous shoot - 'em - up scenes . ")

```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 2   | 9.0312 | 29  |

| Label    | Training Sample Count |
|:---------|:----------------------|
| negative | 16                    |
| positive | 16                    |

### Training Hyperparameters
- batch_size: (32, 32)

- num_epochs: (4, 4)
- max_steps: -1

- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False

- warmup_proportion: 0.1
- l2_weight: 0.01

- seed: 42

- eval_max_steps: -1

- load_best_model_at_end: True



### Training Results

| Epoch  | Step | Training Loss | Validation Loss |

|:------:|:----:|:-------------:|:---------------:|

| 0.0588 | 1    | 0.2389        | -               |

| 1.0    | 17   | -             | 0.2225          |

| 2.0    | 34   | -             | 0.1584          |

| 2.9412 | 50   | 0.1076        | -               |

| 3.0    | 51   | -             | 0.1304          |

| 4.0    | 68   | -             | 0.1293          |



### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Carbon Emitted**: 0.003 kg of CO2

- **Hours Used**: 0.023 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.9.16

- SetFit: 1.2.0.dev0

- Sentence Transformers: 3.3.1

- Transformers: 4.49.0.dev0

- PyTorch: 2.4.1+cu121

- Datasets: 2.15.0

- Tokenizers: 0.21.0



## Citation



### BibTeX

```bibtex

@article{https://doi.org/10.48550/arxiv.2209.11055,

    doi = {10.48550/ARXIV.2209.11055},

    url = {https://arxiv.org/abs/2209.11055},

    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},

    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},

    title = {Efficient Few-Shot Learning Without Prompts},

    publisher = {arXiv},

    year = {2022},

    copyright = {Creative Commons Attribution 4.0 International}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->