--- base_model: nomic-ai/modernbert-embed-base library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 'green might want to hang onto that ski mask , as robbery may be the only way to pay for his next project . ' - text: 'even horror fans will most likely not find what they ''re seeking with trouble every day ; the movie lacks both thrills and humor . ' - text: 'the acting , costumes , music , cinematography and sound are all astounding given the production ''s austere locales . ' - text: 'byler reveals his characters in a way that intrigues and even fascinates us , and he never reduces the situation to simple melodrama . ' - text: 'a sequence of ridiculous shoot - ''em - up scenes . ' inference: true co2_eq_emissions: emissions: 3.166930971100679 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.023 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: SetFit with nomic-ai/modernbert-embed-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8976683937823834 name: Accuracy --- # SetFit with nomic-ai/modernbert-embed-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 8192 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | | | positive | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8977 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("tomaarsen/modernbert-embed-base-sst2") # Run inference preds = model("a sequence of ridiculous shoot - 'em - up scenes . ") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 2 | 9.0312 | 29 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 16 | | positive | 16 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0588 | 1 | 0.2389 | - | | 1.0 | 17 | - | 0.2225 | | 2.0 | 34 | - | 0.1584 | | 2.9412 | 50 | 0.1076 | - | | 3.0 | 51 | - | 0.1304 | | 4.0 | 68 | - | 0.1293 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.003 kg of CO2 - **Hours Used**: 0.023 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.9.16 - SetFit: 1.2.0.dev0 - Sentence Transformers: 3.3.1 - Transformers: 4.49.0.dev0 - PyTorch: 2.4.1+cu121 - Datasets: 2.15.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```