File size: 32,236 Bytes
cb134b6
 
 
 
 
 
 
 
 
a2c5b58
cb134b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e52b46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
---
tags:
- sentence-transformers
- cross-encoder
- text-classification
- generated_from_trainer
- dataset_size:2000000
- loss:BinaryCrossEntropyLoss
base_model: microsoft/MiniLM-L12-H384-uncased
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
  emissions: 194.67805160025472
  energy_consumed: 0.5008413941792291
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 1.403
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: train eval
      type: train-eval
    metrics:
    - type: map
      value: 0.6511488304623287
      name: Map
    - type: mrr@10
      value: 0.6494007936507935
      name: Mrr@10
    - type: ndcg@10
      value: 0.7082478541686404
      name: Ndcg@10
---

# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("sentence_transformers_model_id")
# Get scores for pairs of texts
pairs = [
    ['how much should i pay for breast implants', 'Implant Fees. The cost of buying the implants themselves will influence the overall costs of the procedure. Silicone implants cost between $1,800 and $2,500 though this may go up to slightly over $3,000.Saline implants will cost anywhere between $1,200 and $1,600.The cost of implants varies due to size and manufacturer though there is usually not much of a difference.Anesthesia Fees. There are various options for your anesthesia and this will have a direct impact on the fee you will be charged.otal Costs of Brest Implants. With all the above factors taken into consideration, the total cost of breast implants generally are somewhere in the range of $5,000 and $15,000. However, it is best for your safety and peace of mind to avoid the lowest-charging surgeons and the ones charging very high fees.'],
    ['are merrell shoes lifetime warranty', "Best Answer: Regular shoes. If your horse doesn't have bad feet, don't put shoes on him. Shoes actually weaken the hooves due to a lack of circulation and the nail holes (they just make the hooves stronger while the shoes are on, once you take them off the hooves are weaker than they were at first).f your horse doesn't have bad feet, don't put shoes on him. Shoes actually weaken the hooves due to a lack of circulation and the nail holes (they just make the hooves stronger while the shoes are on, once you take them off the hooves are weaker than they were at first)."],
    ['what is the largest capacity dvd disc available', 'Insert a disc that contains files into the drive that is having the problem. Use a type of disc that is not being recognized in the drive. Good discs to use are game or software discs that were purchased from a store. Do not use music CDs. If the DVD drive can read CDs but not DVDs, insert a DVD movie.nsert a software CD (like a game or business software) into the CD/DVD drive and note what happens. If an AutoPlay window opens, the drive is able to read the disc. The data stored on the disc may still be bad, but an AutoPlay window proves that the drive can read data on the disc.'],
    ['weather in dead sea', "The higher above sea level you go, (for example, the tops of mountains,) the more separated and spaced out the molecules become, which causes cold weather. This is the ACCURATE answer to how elevation affects temperature. learned the answer to this in science this year, so don't worry, it is accurate: The higher above sea level/elevation you are, the colder the temperature becomes. The reas â\x80¦ on for this is because there are air molecules in the air bump closer together when you are lower above sea level-that creates warm weather."],
    ['who should not contribute to roth ira', 'You can contribute to a Roth at any age, even past retirement age, as long as youâ\x80\x99re still earning taxable income. A working spouse can also contribute to a Roth IRA on behalf of a nonworking spouse. For a 401(k), the 2014 contribution limit is $17,500, unless youâ\x80\x99re 50 or older, in which case the limit is $23,000.hen you can strategize your distributions to minimize your tax liability. You can also contribute to a traditional IRA even if you participate in an employer-sponsored retirement plan, but in some cases not all of your traditional IRA contributions will be tax deductible.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'how much should i pay for breast implants',
    [
        'Implant Fees. The cost of buying the implants themselves will influence the overall costs of the procedure. Silicone implants cost between $1,800 and $2,500 though this may go up to slightly over $3,000.Saline implants will cost anywhere between $1,200 and $1,600.The cost of implants varies due to size and manufacturer though there is usually not much of a difference.Anesthesia Fees. There are various options for your anesthesia and this will have a direct impact on the fee you will be charged.otal Costs of Brest Implants. With all the above factors taken into consideration, the total cost of breast implants generally are somewhere in the range of $5,000 and $15,000. However, it is best for your safety and peace of mind to avoid the lowest-charging surgeons and the ones charging very high fees.',
        "Best Answer: Regular shoes. If your horse doesn't have bad feet, don't put shoes on him. Shoes actually weaken the hooves due to a lack of circulation and the nail holes (they just make the hooves stronger while the shoes are on, once you take them off the hooves are weaker than they were at first).f your horse doesn't have bad feet, don't put shoes on him. Shoes actually weaken the hooves due to a lack of circulation and the nail holes (they just make the hooves stronger while the shoes are on, once you take them off the hooves are weaker than they were at first).",
        'Insert a disc that contains files into the drive that is having the problem. Use a type of disc that is not being recognized in the drive. Good discs to use are game or software discs that were purchased from a store. Do not use music CDs. If the DVD drive can read CDs but not DVDs, insert a DVD movie.nsert a software CD (like a game or business software) into the CD/DVD drive and note what happens. If an AutoPlay window opens, the drive is able to read the disc. The data stored on the disc may still be bad, but an AutoPlay window proves that the drive can read data on the disc.',
        "The higher above sea level you go, (for example, the tops of mountains,) the more separated and spaced out the molecules become, which causes cold weather. This is the ACCURATE answer to how elevation affects temperature. learned the answer to this in science this year, so don't worry, it is accurate: The higher above sea level/elevation you are, the colder the temperature becomes. The reas â\x80¦ on for this is because there are air molecules in the air bump closer together when you are lower above sea level-that creates warm weather.",
        'You can contribute to a Roth at any age, even past retirement age, as long as youâ\x80\x99re still earning taxable income. A working spouse can also contribute to a Roth IRA on behalf of a nonworking spouse. For a 401(k), the 2014 contribution limit is $17,500, unless youâ\x80\x99re 50 or older, in which case the limit is $23,000.hen you can strategize your distributions to minimize your tax liability. You can also contribute to a traditional IRA even if you participate in an employer-sponsored retirement plan, but in some cases not all of your traditional IRA contributions will be tax deductible.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `train-eval`, `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>CERerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CERerankingEvaluator)

| Metric      | train-eval | NanoMSMARCO          | NanoNFCorpus         | NanoNQ               |
|:------------|:-----------|:---------------------|:---------------------|:---------------------|
| map         | 0.6511     | 0.5909 (+0.1013)     | 0.3364 (+0.0660)     | 0.6673 (+0.2466)     |
| mrr@10      | 0.6494     | 0.5862 (+0.1087)     | 0.5282 (+0.0284)     | 0.6862 (+0.2595)     |
| **ndcg@10** | **0.7082** | **0.6658 (+0.1254)** | **0.3656 (+0.0405)** | **0.7191 (+0.2185)** |

#### Cross Encoder Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>CENanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CENanoBEIREvaluator)

| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.5315 (+0.1380)     |
| mrr@10      | 0.6002 (+0.1322)     |
| **ndcg@10** | **0.5835 (+0.1281)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 2,000,000 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                                     | sentence_1                                                                                        | label                                           |
  |:--------|:-----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                         | string                                                                                            | int                                             |
  | details | <ul><li>min: 7 characters</li><li>mean: 34.08 characters</li><li>max: 118 characters</li></ul> | <ul><li>min: 83 characters</li><li>mean: 342.99 characters</li><li>max: 1018 characters</li></ul> | <ul><li>0: ~81.70%</li><li>1: ~18.30%</li></ul> |
* Samples:
  | sentence_0                                                   | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | label          |
  |:-------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>how much should i pay for breast implants</code>       | <code>Implant Fees. The cost of buying the implants themselves will influence the overall costs of the procedure. Silicone implants cost between $1,800 and $2,500 though this may go up to slightly over $3,000.Saline implants will cost anywhere between $1,200 and $1,600.The cost of implants varies due to size and manufacturer though there is usually not much of a difference.Anesthesia Fees. There are various options for your anesthesia and this will have a direct impact on the fee you will be charged.otal Costs of Brest Implants. With all the above factors taken into consideration, the total cost of breast implants generally are somewhere in the range of $5,000 and $15,000. However, it is best for your safety and peace of mind to avoid the lowest-charging surgeons and the ones charging very high fees.</code> | <code>1</code> |
  | <code>are merrell shoes lifetime warranty</code>             | <code>Best Answer: Regular shoes. If your horse doesn't have bad feet, don't put shoes on him. Shoes actually weaken the hooves due to a lack of circulation and the nail holes (they just make the hooves stronger while the shoes are on, once you take them off the hooves are weaker than they were at first).f your horse doesn't have bad feet, don't put shoes on him. Shoes actually weaken the hooves due to a lack of circulation and the nail holes (they just make the hooves stronger while the shoes are on, once you take them off the hooves are weaker than they were at first).</code>                                                                                                                                                                                                                                           | <code>0</code> |
  | <code>what is the largest capacity dvd disc available</code> | <code>Insert a disc that contains files into the drive that is having the problem. Use a type of disc that is not being recognized in the drive. Good discs to use are game or software discs that were purchased from a store. Do not use music CDs. If the DVD drive can read CDs but not DVDs, insert a DVD movie.nsert a software CD (like a game or business software) into the CD/DVD drive and note what happens. If an AutoPlay window opens, the drive is able to read the disc. The data stored on the disc may still be bad, but an AutoPlay window proves that the drive can read data on the disc.</code>                                                                                                                                                                                                                             | <code>0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step  | Training Loss | train-eval_ndcg@10 | NanoMSMARCO_ndcg@10 | NanoNFCorpus_ndcg@10 | NanoNQ_ndcg@10   | NanoBEIR_mean_ndcg@10 |
|:-----:|:-----:|:-------------:|:------------------:|:-------------------:|:--------------------:|:----------------:|:---------------------:|
| -1    | -1    | -             | 0.0312             | 0.0280 (-0.5124)    | 0.2260 (-0.0991)     | 0.0315 (-0.4691) | 0.0952 (-0.3602)      |
| 0.016 | 500   | 0.6271        | -                  | -                   | -                    | -                | -                     |
| 0.032 | 1000  | 0.4867        | -                  | -                   | -                    | -                | -                     |
| 0.048 | 1500  | 0.3551        | -                  | -                   | -                    | -                | -                     |
| 0.064 | 2000  | 0.2768        | -                  | -                   | -                    | -                | -                     |
| 0.08  | 2500  | 0.2455        | -                  | -                   | -                    | -                | -                     |
| 0.096 | 3000  | 0.2186        | -                  | -                   | -                    | -                | -                     |
| 0.112 | 3500  | 0.2151        | -                  | -                   | -                    | -                | -                     |
| 0.128 | 4000  | 0.2002        | -                  | -                   | -                    | -                | -                     |
| 0.144 | 4500  | 0.1973        | -                  | -                   | -                    | -                | -                     |
| 0.16  | 5000  | 0.1928        | 0.6389             | 0.6178 (+0.0774)    | 0.3541 (+0.0291)     | 0.6869 (+0.1862) | 0.5529 (+0.0976)      |
| 0.176 | 5500  | 0.1841        | -                  | -                   | -                    | -                | -                     |
| 0.192 | 6000  | 0.1835        | -                  | -                   | -                    | -                | -                     |
| 0.208 | 6500  | 0.1828        | -                  | -                   | -                    | -                | -                     |
| 0.224 | 7000  | 0.1777        | -                  | -                   | -                    | -                | -                     |
| 0.24  | 7500  | 0.1674        | -                  | -                   | -                    | -                | -                     |
| 0.256 | 8000  | 0.1655        | -                  | -                   | -                    | -                | -                     |
| 0.272 | 8500  | 0.1706        | -                  | -                   | -                    | -                | -                     |
| 0.288 | 9000  | 0.1629        | -                  | -                   | -                    | -                | -                     |
| 0.304 | 9500  | 0.1641        | -                  | -                   | -                    | -                | -                     |
| 0.32  | 10000 | 0.1631        | 0.6859             | 0.6220 (+0.0815)    | 0.3849 (+0.0598)     | 0.6951 (+0.1944) | 0.5673 (+0.1119)      |
| 0.336 | 10500 | 0.1616        | -                  | -                   | -                    | -                | -                     |
| 0.352 | 11000 | 0.1575        | -                  | -                   | -                    | -                | -                     |
| 0.368 | 11500 | 0.1565        | -                  | -                   | -                    | -                | -                     |
| 0.384 | 12000 | 0.1523        | -                  | -                   | -                    | -                | -                     |
| 0.4   | 12500 | 0.1628        | -                  | -                   | -                    | -                | -                     |
| 0.416 | 13000 | 0.1569        | -                  | -                   | -                    | -                | -                     |
| 0.432 | 13500 | 0.1581        | -                  | -                   | -                    | -                | -                     |
| 0.448 | 14000 | 0.1527        | -                  | -                   | -                    | -                | -                     |
| 0.464 | 14500 | 0.1484        | -                  | -                   | -                    | -                | -                     |
| 0.48  | 15000 | 0.1531        | 0.6939             | 0.6455 (+0.1051)    | 0.3663 (+0.0413)     | 0.6977 (+0.1970) | 0.5698 (+0.1145)      |
| 0.496 | 15500 | 0.1482        | -                  | -                   | -                    | -                | -                     |
| 0.512 | 16000 | 0.1523        | -                  | -                   | -                    | -                | -                     |
| 0.528 | 16500 | 0.1532        | -                  | -                   | -                    | -                | -                     |
| 0.544 | 17000 | 0.1513        | -                  | -                   | -                    | -                | -                     |
| 0.56  | 17500 | 0.1486        | -                  | -                   | -                    | -                | -                     |
| 0.576 | 18000 | 0.1438        | -                  | -                   | -                    | -                | -                     |
| 0.592 | 18500 | 0.1496        | -                  | -                   | -                    | -                | -                     |
| 0.608 | 19000 | 0.1455        | -                  | -                   | -                    | -                | -                     |
| 0.624 | 19500 | 0.1474        | -                  | -                   | -                    | -                | -                     |
| 0.64  | 20000 | 0.1484        | 0.7025             | 0.6423 (+0.1019)    | 0.3637 (+0.0387)     | 0.7162 (+0.2156) | 0.5741 (+0.1187)      |
| 0.656 | 20500 | 0.1436        | -                  | -                   | -                    | -                | -                     |
| 0.672 | 21000 | 0.1427        | -                  | -                   | -                    | -                | -                     |
| 0.688 | 21500 | 0.1463        | -                  | -                   | -                    | -                | -                     |
| 0.704 | 22000 | 0.1475        | -                  | -                   | -                    | -                | -                     |
| 0.72  | 22500 | 0.1446        | -                  | -                   | -                    | -                | -                     |
| 0.736 | 23000 | 0.1424        | -                  | -                   | -                    | -                | -                     |
| 0.752 | 23500 | 0.1397        | -                  | -                   | -                    | -                | -                     |
| 0.768 | 24000 | 0.1405        | -                  | -                   | -                    | -                | -                     |
| 0.784 | 24500 | 0.1405        | -                  | -                   | -                    | -                | -                     |
| 0.8   | 25000 | 0.1397        | 0.7014             | 0.6492 (+0.1088)    | 0.3672 (+0.0422)     | 0.7229 (+0.2222) | 0.5798 (+0.1244)      |
| 0.816 | 25500 | 0.1378        | -                  | -                   | -                    | -                | -                     |
| 0.832 | 26000 | 0.1409        | -                  | -                   | -                    | -                | -                     |
| 0.848 | 26500 | 0.1368        | -                  | -                   | -                    | -                | -                     |
| 0.864 | 27000 | 0.1389        | -                  | -                   | -                    | -                | -                     |
| 0.88  | 27500 | 0.1354        | -                  | -                   | -                    | -                | -                     |
| 0.896 | 28000 | 0.1412        | -                  | -                   | -                    | -                | -                     |
| 0.912 | 28500 | 0.138         | -                  | -                   | -                    | -                | -                     |
| 0.928 | 29000 | 0.1369        | -                  | -                   | -                    | -                | -                     |
| 0.944 | 29500 | 0.1321        | -                  | -                   | -                    | -                | -                     |
| 0.96  | 30000 | 0.137         | 0.7150             | 0.6576 (+0.1172)    | 0.3655 (+0.0405)     | 0.7211 (+0.2204) | 0.5814 (+0.1260)      |
| 0.976 | 30500 | 0.1342        | -                  | -                   | -                    | -                | -                     |
| 0.992 | 31000 | 0.137         | -                  | -                   | -                    | -                | -                     |
| 1.0   | 31250 | -             | 0.7082             | 0.6658 (+0.1254)    | 0.3656 (+0.0405)     | 0.7191 (+0.2185) | 0.5835 (+0.1281)      |


### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.501 kWh
- **Carbon Emitted**: 0.195 kg of CO2
- **Hours Used**: 1.403 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.48.3
- PyTorch: 2.5.0+cu121
- Accelerate: 1.3.0
- Datasets: 2.20.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->