File size: 49,188 Bytes
579455e 7435cd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
---
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:399282
- loss:LambdaLoss
base_model: microsoft/MiniLM-L12-H384-uncased
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
emissions: 860.698080594824
energy_consumed: 2.214287759246991
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 7.301
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.6352
name: Map
- type: mrr@10
value: 0.6298
name: Mrr@10
- type: ndcg@10
value: 0.6981
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.3389
name: Map
- type: mrr@10
value: 0.5872
name: Mrr@10
- type: ndcg@10
value: 0.4036
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.7174
name: Map
- type: mrr@10
value: 0.7283
name: Mrr@10
- type: ndcg@10
value: 0.7584
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.5638
name: Map
- type: mrr@10
value: 0.6485
name: Mrr@10
- type: ndcg@10
value: 0.62
name: Ndcg@10
license: apache-2.0
language:
- en
---
# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-msmarco-MiniLM-L12-H384-uncased-lambdaloss")
# Get scores for pairs of texts
pairs = [
['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],
['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],
['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (3,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'How many calories in an egg',
[
'There are on average between 55 and 80 calories in an egg depending on its size.',
'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',
'Most of the calories in an egg come from the yellow yolk in the center.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|:------------|:---------------------|:---------------------|:---------------------|
| map | 0.6352 (+0.1456) | 0.3389 (+0.0779) | 0.7174 (+0.2978) |
| mrr@10 | 0.6298 (+0.1523) | 0.5872 (+0.0874) | 0.7283 (+0.3016) |
| **ndcg@10** | **0.6981 (+0.1577)** | **0.4036 (+0.0786)** | **0.7584 (+0.2577)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.5638 (+0.1738) |
| mrr@10 | 0.6485 (+0.1805) |
| **ndcg@10** | **0.6200 (+0.1647)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 399,282 training samples
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
| | query | docs | labels |
|:--------|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|
| type | string | list | list |
| details | <ul><li>min: 6 characters</li><li>mean: 33.0 characters</li><li>max: 154 characters</li></ul> | <ul><li>min: 6 elements</li><li>mean: 13.23 elements</li><li>max: 20 elements</li></ul> | <ul><li>min: 6 elements</li><li>mean: 13.23 elements</li><li>max: 20 elements</li></ul> |
* Samples:
| query | docs | labels |
|:-----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
| <code>intel current gen core processors</code> | <code>["Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets. As of 2017 the current lineup of Core processors included the Intel Core i7, Intel Core i5, and Intel Core i3, along with the Y - Series Intel Core CPU's.", "Most noticeably that Panasonic switched from Intel Core 2 Duo power to the latest Intel Core i3 and i5 processors. The three processors available in the new Toughbook 31, together with the new Mobile Intel QM57 Express chipset, are all part of Intel's Calpella platform.", 'The new 7th Gen Intel Core i7-7700HQ processor gives the 14-inch Razer Blade 2.8GHz of quad-core processing power and Turbo Boost speeds, which automatically increases the speed of active cores â\x80\x93 up to 3.8GHz.', 'Key difference: Intel Core i3 is a type of dual-core processor. i5 processors have 2 to 4 cores. A dual-core processor is a type of a central processing unit (CPU) that has two complete execution cores. Hence, it has t...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>renovation definition</code> | <code>['Renovation is the act of renewing or restoring something. If your kitchen is undergoing a renovation, thereâ\x80\x99s probably plaster and paint all over the place and you should probably get take-out.', 'NEW GALLERY SPACES OPENING IN 2017. In early 2017, our fourth floor will be transformed into a new destination for historical education and innovation. During the current renovation, objects from our permanent collection are on view throughout the Museum.', 'A same level house extension in Australia will cost approximately $60,000 to $200,000+. Adding a room or extending your living area on the ground floor are affordable ways of creating more space.Here are some key points to consider that will help you keep your renovation costs in check.RTICLE Stephanie Matheson. A same level house extension in Australia will cost approximately $60,000 to $200,000+. Adding a room or extending your living area on the ground floor are affordable ways of creating more space. Here are some key points...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>what is a girasol</code> | <code>['Girasol definition, an opal that reflects light in a bright luminous glow. See more.', 'Also, a type of opal from Mexico, referred to as Mexican water opal, is a colorless opal which exhibits either a bluish or golden internal sheen. Girasol opal is a term sometimes mistakenly and improperly used to refer to fire opals, as well as a type of transparent to semitransparent type milky quartz from Madagascar which displays an asterism, or star effect, when cut properly.', 'What is the meaning of Girasol? How popular is the baby name Girasol? Learn the origin and popularity plus how to pronounce Girasol', 'There are 5 basic types of opal. These types are Peruvian Opal, Fire Opal, Girasol Opal, Common opal and Precious Opal. There are 5 basic types of opal. These types are Peruvian Opal, Fire Opal, Girasol Opal, Common opal and Precious Opal.', 'girasol (Ë\x88dÊ\x92ɪrÉ\x99Ë\x8csÉ\x92l; -Ë\x8csÉ\x99Ê\x8al) , girosol or girasole n (Jewellery) a type of opal that has a red or pink glow in br...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
* Loss: [<code>LambdaLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#lambdaloss) with these parameters:
```json
{
"weighting_scheme": "sentence_transformers.cross_encoder.losses.LambdaLoss.NDCGLoss2PPScheme",
"k": null,
"sigma": 1.0,
"eps": 1e-10,
"reduction_log": "binary",
"activation_fct": "torch.nn.modules.linear.Identity",
"mini_batch_size": 16
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,000 evaluation samples
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
| | query | docs | labels |
|:--------|:------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|
| type | string | list | list |
| details | <ul><li>min: 10 characters</li><li>mean: 33.63 characters</li><li>max: 137 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 12.50 elements</li><li>max: 20 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 12.50 elements</li><li>max: 20 elements</li></ul> |
* Samples:
| query | docs | labels |
|:----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
| <code>can marijuana help dementia</code> | <code>["Cannabis 'could stop dementia in its tracks'. Cannabis may help keep Alzheimer's disease at bay. In experiments, a marijuana-based medicine triggered the formation of new brain cells and cut inflammation linked to dementia. The researchers say that using the information to create a pill suitable for people could help prevent or delay the onset of Alzheimer's.", 'Marijuana (cannabis): Marijuana in any form is not allowed on aircraft and is not allowed in the secure part of the airport (beyond the TSA screening areas). In addition it is illegal to import marijuana or marijuana-related items into the US.', 'Depakote and dementia - Can dementia be cured? Unfortunately, no. Dementia is a progressive disease. Even available treatments only slow progression or tame symptoms.', 'Marijuana Prices. The price of marijuana listed below is the typical price to buy marijuana on the black market in U.S. dollars. How much marijuana cost and the sale price of marijuana are based upon the United Natio...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>what are carcinogen</code> | <code>['Written By: Carcinogen, any of a number of agents that can cause cancer in humans. They can be divided into three major categories: chemical carcinogens (including those from biological sources), physical carcinogens, and oncogenic (cancer-causing) viruses. 1 Most carcinogens, singly or in combination, produce cancer by interacting with DNA in cells and thereby interfering with normal cellular function.', 'Tarragon (Artemisia dracunculus) is a species of perennial herb in the sunflower family. It is widespread in the wild across much of Eurasia and North America, and is cultivated for culinary and medicinal purposes in many lands.One sub-species, Artemisia dracunculus var. sativa, is cultivated for use of the leaves as an aromatic culinary herb.arragon has an aromatic property reminiscent of anise, due to the presence of estragole, a known carcinogen and teratogen in mice. The European Union investigation revealed that the danger of estragole is minimal even at 100â\x80\x931,000 tim...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>who played ben geller in friends</code> | <code>["Noelle and Cali aren't the only twins to have played one child character in Friends. Double vision: Ross' cheeky son Ben (pictured), from his first marriage to Carol, was also played by twins, Dylan and Cole Sprouse, who are now 22.", 'Update 7/29/06: There are now three â\x80\x9cTeaching Pastorsâ\x80\x9d at Applegate Christian Fellowship, according to their web site. Jon Courson is now back at Applegate. The other two listed as Teaching Pastors are Jonâ\x80\x99s two sons: Peter John and Ben Courson.on Courson has been appreciated over the years by many people who are my friends and whom I respect. I believe that he preaches the real Jesus and the true Gospel, for which I rejoice. I also believe that his ministry and church organization is a reasonable example with which to examine important issues together.', 'Ben 10 (Reboot) Ben 10: Omniverse is the fourth iteration of the Ben 10 franchise, and it is the sequel of Ben 10: Ultimate Alien. Ben was all set to be a solo hero with his n...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
* Loss: [<code>LambdaLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#lambdaloss) with these parameters:
```json
{
"weighting_scheme": "sentence_transformers.cross_encoder.losses.LambdaLoss.NDCGLoss2PPScheme",
"k": null,
"sigma": 1.0,
"eps": 1e-10,
"reduction_log": "binary",
"activation_fct": "torch.nn.modules.linear.Identity",
"mini_batch_size": 16
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|:----------:|:---------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1 | -1 | - | - | 0.0086 (-0.5318) | 0.2639 (-0.0612) | 0.0000 (-0.5006) | 0.0908 (-0.3645) |
| 0.0000 | 1 | 0.8912 | - | - | - | - | - |
| 0.0080 | 200 | 0.8246 | - | - | - | - | - |
| 0.0160 | 400 | 0.8117 | - | - | - | - | - |
| 0.0240 | 600 | 0.4376 | - | - | - | - | - |
| 0.0321 | 800 | 0.3271 | - | - | - | - | - |
| 0.0401 | 1000 | 0.2819 | 0.2442 | 0.6288 (+0.0884) | 0.4289 (+0.1039) | 0.7117 (+0.2111) | 0.5898 (+0.1344) |
| 0.0481 | 1200 | 0.24 | - | - | - | - | - |
| 0.0561 | 1400 | 0.2296 | - | - | - | - | - |
| 0.0641 | 1600 | 0.2244 | - | - | - | - | - |
| 0.0721 | 1800 | 0.2057 | - | - | - | - | - |
| 0.0801 | 2000 | 0.1947 | 0.1775 | 0.6251 (+0.0846) | 0.4318 (+0.1068) | 0.7111 (+0.2105) | 0.5893 (+0.1340) |
| 0.0882 | 2200 | 0.1939 | - | - | - | - | - |
| 0.0962 | 2400 | 0.1996 | - | - | - | - | - |
| 0.1042 | 2600 | 0.1938 | - | - | - | - | - |
| 0.1122 | 2800 | 0.1928 | - | - | - | - | - |
| 0.1202 | 3000 | 0.1915 | 0.1684 | 0.6226 (+0.0822) | 0.4140 (+0.0890) | 0.7063 (+0.2057) | 0.5810 (+0.1256) |
| 0.1282 | 3200 | 0.1898 | - | - | - | - | - |
| 0.1362 | 3400 | 0.1931 | - | - | - | - | - |
| 0.1443 | 3600 | 0.1834 | - | - | - | - | - |
| 0.1523 | 3800 | 0.1813 | - | - | - | - | - |
| 0.1603 | 4000 | 0.1722 | 0.1594 | 0.6584 (+0.1180) | 0.4167 (+0.0916) | 0.7031 (+0.2025) | 0.5927 (+0.1374) |
| 0.1683 | 4200 | 0.1759 | - | - | - | - | - |
| 0.1763 | 4400 | 0.187 | - | - | - | - | - |
| 0.1843 | 4600 | 0.1682 | - | - | - | - | - |
| 0.1923 | 4800 | 0.1813 | - | - | - | - | - |
| 0.2004 | 5000 | 0.1744 | 0.1541 | 0.6275 (+0.0871) | 0.4591 (+0.1341) | 0.7101 (+0.2095) | 0.5989 (+0.1435) |
| 0.2084 | 5200 | 0.164 | - | - | - | - | - |
| 0.2164 | 5400 | 0.1758 | - | - | - | - | - |
| 0.2244 | 5600 | 0.1715 | - | - | - | - | - |
| 0.2324 | 5800 | 0.1766 | - | - | - | - | - |
| 0.2404 | 6000 | 0.1633 | 0.1513 | 0.5947 (+0.0543) | 0.4002 (+0.0751) | 0.7161 (+0.2155) | 0.5703 (+0.1150) |
| 0.2484 | 6200 | 0.1675 | - | - | - | - | - |
| 0.2565 | 6400 | 0.1615 | - | - | - | - | - |
| 0.2645 | 6600 | 0.1697 | - | - | - | - | - |
| 0.2725 | 6800 | 0.1743 | - | - | - | - | - |
| 0.2805 | 7000 | 0.1781 | 0.1539 | 0.6461 (+0.1056) | 0.4281 (+0.1030) | 0.7288 (+0.2281) | 0.6010 (+0.1456) |
| 0.2885 | 7200 | 0.1796 | - | - | - | - | - |
| 0.2965 | 7400 | 0.1681 | - | - | - | - | - |
| 0.3045 | 7600 | 0.1746 | - | - | - | - | - |
| 0.3126 | 7800 | 0.1726 | - | - | - | - | - |
| 0.3206 | 8000 | 0.1625 | 0.1474 | 0.6162 (+0.0757) | 0.4363 (+0.1113) | 0.7352 (+0.2346) | 0.5959 (+0.1405) |
| 0.3286 | 8200 | 0.1574 | - | - | - | - | - |
| 0.3366 | 8400 | 0.1672 | - | - | - | - | - |
| 0.3446 | 8600 | 0.1766 | - | - | - | - | - |
| 0.3526 | 8800 | 0.1714 | - | - | - | - | - |
| 0.3606 | 9000 | 0.163 | 0.1497 | 0.6337 (+0.0933) | 0.4559 (+0.1308) | 0.7306 (+0.2300) | 0.6067 (+0.1513) |
| 0.3686 | 9200 | 0.1626 | - | - | - | - | - |
| 0.3767 | 9400 | 0.1638 | - | - | - | - | - |
| 0.3847 | 9600 | 0.1603 | - | - | - | - | - |
| 0.3927 | 9800 | 0.1689 | - | - | - | - | - |
| 0.4007 | 10000 | 0.1629 | 0.1500 | 0.6451 (+0.1046) | 0.4330 (+0.1080) | 0.7338 (+0.2332) | 0.6040 (+0.1486) |
| 0.4087 | 10200 | 0.1644 | - | - | - | - | - |
| 0.4167 | 10400 | 0.1596 | - | - | - | - | - |
| 0.4247 | 10600 | 0.1655 | - | - | - | - | - |
| 0.4328 | 10800 | 0.1596 | - | - | - | - | - |
| 0.4408 | 11000 | 0.1608 | 0.1416 | 0.6706 (+0.1302) | 0.4425 (+0.1174) | 0.7462 (+0.2455) | 0.6197 (+0.1644) |
| 0.4488 | 11200 | 0.1676 | - | - | - | - | - |
| 0.4568 | 11400 | 0.1642 | - | - | - | - | - |
| 0.4648 | 11600 | 0.1558 | - | - | - | - | - |
| 0.4728 | 11800 | 0.1582 | - | - | - | - | - |
| 0.4808 | 12000 | 0.1605 | 0.1471 | 0.6626 (+0.1222) | 0.4141 (+0.0890) | 0.7162 (+0.2156) | 0.5976 (+0.1423) |
| 0.4889 | 12200 | 0.1692 | - | - | - | - | - |
| 0.4969 | 12400 | 0.1592 | - | - | - | - | - |
| 0.5049 | 12600 | 0.1584 | - | - | - | - | - |
| 0.5129 | 12800 | 0.1613 | - | - | - | - | - |
| 0.5209 | 13000 | 0.1626 | 0.1436 | 0.6800 (+0.1396) | 0.4200 (+0.0949) | 0.7336 (+0.2329) | 0.6112 (+0.1558) |
| 0.5289 | 13200 | 0.1551 | - | - | - | - | - |
| 0.5369 | 13400 | 0.1622 | - | - | - | - | - |
| 0.5450 | 13600 | 0.1646 | - | - | - | - | - |
| 0.5530 | 13800 | 0.1642 | - | - | - | - | - |
| 0.5610 | 14000 | 0.1697 | 0.1396 | 0.6808 (+0.1403) | 0.4255 (+0.1005) | 0.7257 (+0.2250) | 0.6107 (+0.1553) |
| 0.5690 | 14200 | 0.1565 | - | - | - | - | - |
| 0.5770 | 14400 | 0.158 | - | - | - | - | - |
| 0.5850 | 14600 | 0.1497 | - | - | - | - | - |
| 0.5930 | 14800 | 0.1627 | - | - | - | - | - |
| 0.6011 | 15000 | 0.1599 | 0.1374 | 0.6647 (+0.1243) | 0.4185 (+0.0935) | 0.7465 (+0.2458) | 0.6099 (+0.1545) |
| 0.6091 | 15200 | 0.1586 | - | - | - | - | - |
| 0.6171 | 15400 | 0.1566 | - | - | - | - | - |
| 0.6251 | 15600 | 0.158 | - | - | - | - | - |
| 0.6331 | 15800 | 0.1693 | - | - | - | - | - |
| 0.6411 | 16000 | 0.157 | 0.1377 | 0.6844 (+0.1440) | 0.4022 (+0.0771) | 0.7715 (+0.2708) | 0.6193 (+0.1640) |
| 0.6491 | 16200 | 0.1508 | - | - | - | - | - |
| 0.6572 | 16400 | 0.1477 | - | - | - | - | - |
| 0.6652 | 16600 | 0.1589 | - | - | - | - | - |
| 0.6732 | 16800 | 0.148 | - | - | - | - | - |
| 0.6812 | 17000 | 0.153 | 0.1376 | 0.6835 (+0.1431) | 0.4230 (+0.0980) | 0.7471 (+0.2464) | 0.6179 (+0.1625) |
| 0.6892 | 17200 | 0.1599 | - | - | - | - | - |
| 0.6972 | 17400 | 0.152 | - | - | - | - | - |
| 0.7052 | 17600 | 0.1516 | - | - | - | - | - |
| 0.7133 | 17800 | 0.1537 | - | - | - | - | - |
| 0.7213 | 18000 | 0.1579 | 0.1386 | 0.6919 (+0.1514) | 0.4111 (+0.0860) | 0.7572 (+0.2565) | 0.6200 (+0.1646) |
| 0.7293 | 18200 | 0.1548 | - | - | - | - | - |
| 0.7373 | 18400 | 0.1492 | - | - | - | - | - |
| 0.7453 | 18600 | 0.1496 | - | - | - | - | - |
| 0.7533 | 18800 | 0.1514 | - | - | - | - | - |
| **0.7613** | **19000** | **0.1538** | **0.14** | **0.6981 (+0.1577)** | **0.4036 (+0.0786)** | **0.7584 (+0.2577)** | **0.6200 (+0.1647)** |
| 0.7694 | 19200 | 0.1504 | - | - | - | - | - |
| 0.7774 | 19400 | 0.146 | - | - | - | - | - |
| 0.7854 | 19600 | 0.1467 | - | - | - | - | - |
| 0.7934 | 19800 | 0.1542 | - | - | - | - | - |
| 0.8014 | 20000 | 0.1567 | 0.1365 | 0.6786 (+0.1382) | 0.4081 (+0.0831) | 0.7565 (+0.2559) | 0.6144 (+0.1591) |
| 0.8094 | 20200 | 0.1561 | - | - | - | - | - |
| 0.8174 | 20400 | 0.1444 | - | - | - | - | - |
| 0.8255 | 20600 | 0.15 | - | - | - | - | - |
| 0.8335 | 20800 | 0.1552 | - | - | - | - | - |
| 0.8415 | 21000 | 0.1548 | 0.1368 | 0.6786 (+0.1381) | 0.4111 (+0.0860) | 0.7544 (+0.2537) | 0.6147 (+0.1593) |
| 0.8495 | 21200 | 0.1533 | - | - | - | - | - |
| 0.8575 | 21400 | 0.1538 | - | - | - | - | - |
| 0.8655 | 21600 | 0.1486 | - | - | - | - | - |
| 0.8735 | 21800 | 0.1542 | - | - | - | - | - |
| 0.8816 | 22000 | 0.1536 | 0.1369 | 0.6670 (+0.1266) | 0.4102 (+0.0851) | 0.7504 (+0.2497) | 0.6092 (+0.1538) |
| 0.8896 | 22200 | 0.1604 | - | - | - | - | - |
| 0.8976 | 22400 | 0.1498 | - | - | - | - | - |
| 0.9056 | 22600 | 0.1563 | - | - | - | - | - |
| 0.9136 | 22800 | 0.154 | - | - | - | - | - |
| 0.9216 | 23000 | 0.1553 | 0.1363 | 0.6845 (+0.1441) | 0.4134 (+0.0884) | 0.7447 (+0.2441) | 0.6142 (+0.1589) |
| 0.9296 | 23200 | 0.1488 | - | - | - | - | - |
| 0.9377 | 23400 | 0.1489 | - | - | - | - | - |
| 0.9457 | 23600 | 0.1456 | - | - | - | - | - |
| 0.9537 | 23800 | 0.1561 | - | - | - | - | - |
| 0.9617 | 24000 | 0.1485 | 0.1374 | 0.6811 (+0.1407) | 0.4111 (+0.0861) | 0.7516 (+0.2510) | 0.6146 (+0.1592) |
| 0.9697 | 24200 | 0.1462 | - | - | - | - | - |
| 0.9777 | 24400 | 0.1472 | - | - | - | - | - |
| 0.9857 | 24600 | 0.1536 | - | - | - | - | - |
| 0.9937 | 24800 | 0.157 | - | - | - | - | - |
| -1 | -1 | - | - | 0.6981 (+0.1577) | 0.4036 (+0.0786) | 0.7584 (+0.2577) | 0.6200 (+0.1647) |
* The bold row denotes the saved checkpoint.
</details>
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 2.214 kWh
- **Carbon Emitted**: 0.861 kg of CO2
- **Hours Used**: 7.301 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### LambdaLoss
```bibtex
@inproceedings{wang2018lambdaloss,
title={The lambdaloss framework for ranking metric optimization},
author={Wang, Xuanhui and Li, Cheng and Golbandi, Nadav and Bendersky, Michael and Najork, Marc},
booktitle={Proceedings of the 27th ACM international conference on information and knowledge management},
pages={1313--1322},
year={2018}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |