File size: 32,541 Bytes
4b26fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
---

language:
- en
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:78704
- loss:PListMLELoss
base_model: microsoft/MiniLM-L12-H384-uncased
datasets:
- microsoft/ms_marco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
  emissions: 93.08788204215189
  energy_consumed: 0.23948392867068316
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.972
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.49
      name: Map
    - type: mrr@10
      value: 0.4792
      name: Mrr@10
    - type: ndcg@10
      value: 0.5526
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.3317
      name: Map
    - type: mrr@10
      value: 0.5575
      name: Mrr@10
    - type: ndcg@10
      value: 0.3642
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.5829
      name: Map
    - type: mrr@10
      value: 0.5914
      name: Mrr@10
    - type: ndcg@10
      value: 0.6488
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.4682
      name: Map
    - type: mrr@10
      value: 0.5427
      name: Mrr@10
    - type: ndcg@10
      value: 0.5219
      name: Ndcg@10
---


# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import CrossEncoder



# Download from the 🤗 Hub

model = CrossEncoder("tomaarsen/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-plistmle-seeded")

# Get scores for pairs of texts

pairs = [

    ['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],

    ['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],

    ['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],

]

scores = model.predict(pairs)

print(scores.shape)

# (3,)



# Or rank different texts based on similarity to a single text

ranks = model.rank(

    'How many calories in an egg',

    [

        'There are on average between 55 and 80 calories in an egg depending on its size.',

        'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',

        'Most of the calories in an egg come from the yellow yolk in the center.',

    ]

)

# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json

  {

      "at_k": 10,

      "always_rerank_positives": true

  }

  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |

|:------------|:---------------------|:---------------------|:---------------------|

| map         | 0.4900 (+0.0004)     | 0.3317 (+0.0707)     | 0.5829 (+0.1632)     |

| mrr@10      | 0.4792 (+0.0017)     | 0.5575 (+0.0577)     | 0.5914 (+0.1647)     |

| **ndcg@10** | **0.5526 (+0.0122)** | **0.3642 (+0.0391)** | **0.6488 (+0.1481)** |



#### Cross Encoder Nano BEIR



* Dataset: `NanoBEIR_R100_mean`

* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [
          "msmarco",

          "nfcorpus",

          "nq"

      ],

      "rerank_k": 100,

      "at_k": 10,

      "always_rerank_positives": true

  }

  ```


| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.4682 (+0.0781)     |
| mrr@10      | 0.5427 (+0.0747)     |
| **ndcg@10** | **0.5219 (+0.0665)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### ms_marco



* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)

* Size: 78,704 training samples

* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                                          | docs                                                                                   | labels                                                                                 |

  |:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|

  | type    | string                                                                                         | list                                                                                   | list                                                                                   |

  | details | <ul><li>min: 11 characters</li><li>mean: 33.61 characters</li><li>max: 85 characters</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> |

* Samples:

  | query                                                             | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |

  |:------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|

  | <code>what does syllables mean</code>                             | <code>['A syllable is a unit of organization for a sequence of speech sounds. For example, the word water is composed of two syllables: wa and ter. A syllable is typically made up of a syllable nucleus (most often a vowel) with optional initial and final margins (typically, consonants). Syllables are often considered the phonological building blocks of words. They can influence the rhythm of a language, its prosody, its poetic meter and its stress patterns. The first syllable of a word is the initial syllable and the last syllable is the final syllable. In languages accented on one of the last three syllables, the last syllable is called the ultima, the next-to-last is called the penult, and the third syllable from the end is called the antepenult.', '1 A unit of pronunciation having one vowel sound, with or without surrounding consonants, forming the whole or a part of a word; for example, there are two syllables in water and three in inferno. Example sentences. 1  The vowels of the stresse...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>how long does it take to become a child psychiatrist</code> | <code>["The Path to Becoming a Psychologist. First, you will need a bachelor's degree (4 to 5 years), which teaches the fundamentals of psychology. After that, you will need a master's degree (2 to 3 years), which can qualify you to practice in the field as a case manager, employment specialist, or social worker.", 'For example, becoming a school psychologist can take a little as two years of graduate-level education, and only requires a master’s degree. On the other hand, if you want to become a child psychologist you will need to earn a doctorate degree, which can require up to seven additional years of psychologist schooling.', '1 During the first four years of medical school you take classes, do lab work, and learn about medical ethics. 2  You may not have the opportunity to do hands-on psychiatry work at this stage, but earning your medical degree is a requirement in the path to becoming a psychiatrist, so stick with it.', '1 Clinical Psychologist: Doctorate Degree in Psychology (4 to 7...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>how do great horned owls defend themselves</code>           | <code>["Owls can't always successfully defend themselves from other animals, particularly their prey. Great horned owls, for example, are often found either dead or injured as a result of would-be prey like skunks and porcupines fighting back. Feet and Beak. Like other birds in the raptor group, owls of all species use their beaks and talons to defend themselves. An owl's feet are equipped with particularly long, sharp and curved claws, which he can dig into an adversary and use like hooks to tear and rip at flesh.", "Tom Brakefield/Stockbyte/Getty Images. Owls are raptors, birds of prey. They provide sustenance and defend themselves with strong, sharp breaks and talons. The owl's ability to avoid detection is perhaps the most important weapon in his defensive arsenal, since it allows him to avoid confrontation in the first place. Feet and Beak. Like other birds in the raptor group, owls of all species use their beaks and talons to defend themselves. An owl's feet are equipped with particula...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

* Loss: [<code>PListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#plistmleloss) with these parameters:

  ```json

  {

      "lambda_weight": "sentence_transformers.cross_encoder.losses.PListMLELoss.PListMLELambdaWeight",
      "activation_fct": "torch.nn.modules.linear.Identity",

      "mini_batch_size": 16,

      "respect_input_order": true

  }

  ```


### Evaluation Dataset

#### ms_marco



* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)

* Size: 1,000 evaluation samples

* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                                          | docs                                                                                   | labels                                                                                 |

  |:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|

  | type    | string                                                                                         | list                                                                                   | list                                                                                   |

  | details | <ul><li>min: 12 characters</li><li>mean: 33.62 characters</li><li>max: 99 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |

* Samples:

  | query                                                                         | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |

  |:------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|

  | <code>what age do kids fly free?</code>                                       | <code>["If you're taking a domestic flight with your infant, your airline will likely allow the baby to fly at no cost -- provided you hold him on your lap throughout the flight. Generally, American Airlines allows children younger than two years of age to fly for free with a parent or another adult over the age of 18. You'll save cash, though you'll likely be uncomfortable after a short time unless you're traveling with a partner or other adult who can take turns holding the baby. ", "Unaccompanied Minor Program. The Unaccompanied Minor Program is required for all children 5-14 years old when not traveling in the same compartment with an adult who is at least 18 years old or the child's parent/legal guardian. The program is optional for children 15-17 years old. ", 'Most airlines let under 2 fly for free (not under 3).If flying internationally,taxes or a small service fee usually 10% of adult fare will have to be paid. ANOTHER ANSWER I totally agree with answer #2. Whether you have a newbor...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>extensor muscles of the hand that are innervated by radial nerve</code> | <code>['Extrinsic muscles of the hand innervated by the radial nerve. extensor digitorum communis (EDC), extensor digiti minimi (EDM), extensor indicis, extensor pollicis longus (EPL), extensor pollicis brevis (EPB), abductor pollicis longus (APL).', 'The radial nerve contributed 1 to 3 branches to the brachialis in 10 of 20 specimens. In all specimens, the radial nerve innervated all of the extensor fore-arm muscles. In 2 of 20 specimens, there was an extensor medius proprius (EMP) muscle.', 'The thenar muscles are three short muscles located at the base of the thumb. The muscle bellies produce a bulge, known as the thenar eminence. They are responsible for the fine movements of the thumb. The median nerve innervates all the thenar muscles.', 'A total of 27 bones constitute the basic skeleton of the wrist and hand. The hand is innervated by 3 nerves — the median, ulnar, and radial nerves — each of which has sensory and motor components. The muscles of the hand are divided into intrinsic and...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>what does domestic limited liability company mean</code>                | <code>['2. Domestic limited liability company  means an entity that is an unincorporated association having one or more members and that is organized under ORS chapter 63. 4. Look beforeyou eat. Portland-area restaurant health scores. 1. Domestic limited liability company  means an entity that is an unincorporated association having one or more members and that is organized under ORS chapter 63.', 'To register a Domestic Limited Liability Company in Hawaii, you must file the Articles of Organization for Limited Liability Company Form LLC-1 with the appropriate filing fee(s) . Use the links above to register and pay online or to access our fillable PDF forms which you can print and mail in with your payment. ', "I was talking to someone the other day who has a limited liability company (LLC). She is doing business in several states and she said she was told she must register as a foreign LLC in each state. She wondered why it was called a foreign LLC, since she wasn't doing business outside t...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

* Loss: [<code>PListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#plistmleloss) with these parameters:

  ```json

  {

      "lambda_weight": "sentence_transformers.cross_encoder.losses.PListMLELoss.PListMLELambdaWeight",
      "activation_fct": "torch.nn.modules.linear.Identity",

      "mini_batch_size": 16,

      "respect_input_order": true

  }

  ```


### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step     | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |

|:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|

| -1         | -1       | -             | -               | 0.0300 (-0.5104)         | 0.2528 (-0.0723)          | 0.0168 (-0.4839)     | 0.0999 (-0.3555)           |

| 0.0002     | 1        | 2.2023        | -               | -                        | -                         | -                    | -                          |

| 0.0508     | 250      | 2.1003        | -               | -                        | -                         | -                    | -                          |

| 0.1016     | 500      | 1.9606        | 1.9318          | 0.2069 (-0.3335)         | 0.2496 (-0.0755)          | 0.2308 (-0.2699)     | 0.2291 (-0.2263)           |

| 0.1525     | 750      | 1.8932        | -               | -                        | -                         | -                    | -                          |

| 0.2033     | 1000     | 1.8711        | 1.8656          | 0.4275 (-0.1129)         | 0.2878 (-0.0372)          | 0.4897 (-0.0109)     | 0.4017 (-0.0537)           |

| 0.2541     | 1250     | 1.8597        | -               | -                        | -                         | -                    | -                          |

| 0.3049     | 1500     | 1.8486        | 1.8518          | 0.5873 (+0.0469)         | 0.3577 (+0.0327)          | 0.5874 (+0.0868)     | 0.5108 (+0.0555)           |

| 0.3558     | 1750     | 1.8415        | -               | -                        | -                         | -                    | -                          |

| 0.4066     | 2000     | 1.8338        | 1.8441          | 0.5467 (+0.0062)         | 0.3619 (+0.0368)          | 0.5936 (+0.0929)     | 0.5007 (+0.0453)           |

| 0.4574     | 2250     | 1.8189        | -               | -                        | -                         | -                    | -                          |

| 0.5082     | 2500     | 1.8338        | 1.8293          | 0.5523 (+0.0119)         | 0.3676 (+0.0426)          | 0.6452 (+0.1446)     | 0.5217 (+0.0664)           |

| 0.5591     | 2750     | 1.8109        | -               | -                        | -                         | -                    | -                          |

| 0.6099     | 3000     | 1.8291        | 1.8306          | 0.5489 (+0.0085)         | 0.3649 (+0.0398)          | 0.6360 (+0.1353)     | 0.5166 (+0.0612)           |

| 0.6607     | 3250     | 1.8124        | -               | -                        | -                         | -                    | -                          |

| **0.7115** | **3500** | **1.8205**    | **1.8301**      | **0.5526 (+0.0122)**     | **0.3642 (+0.0391)**      | **0.6488 (+0.1481)** | **0.5219 (+0.0665)**       |

| 0.7624     | 3750     | 1.8166        | -               | -                        | -                         | -                    | -                          |

| 0.8132     | 4000     | 1.8223        | 1.8205          | 0.5512 (+0.0108)         | 0.3578 (+0.0328)          | 0.6173 (+0.1167)     | 0.5088 (+0.0534)           |

| 0.8640     | 4250     | 1.8129        | -               | -                        | -                         | -                    | -                          |

| 0.9148     | 4500     | 1.8132        | 1.8214          | 0.5364 (-0.0040)         | 0.3603 (+0.0353)          | 0.6257 (+0.1251)     | 0.5075 (+0.0521)           |

| 0.9656     | 4750     | 1.8188        | -               | -                        | -                         | -                    | -                          |

| -1         | -1       | -             | -               | 0.5526 (+0.0122)         | 0.3642 (+0.0391)          | 0.6488 (+0.1481)     | 0.5219 (+0.0665)           |



* The bold row denotes the saved checkpoint.



### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.239 kWh

- **Carbon Emitted**: 0.093 kg of CO2

- **Hours Used**: 0.972 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.5.0.dev0

- Transformers: 4.49.0

- PyTorch: 2.6.0+cu124

- Accelerate: 1.5.1

- Datasets: 3.3.2

- Tokenizers: 0.21.0



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### PListMLELoss

```bibtex

@inproceedings{lan2014position,

  title={Position-Aware ListMLE: A Sequential Learning Process for Ranking.},

  author={Lan, Yanyan and Zhu, Yadong and Guo, Jiafeng and Niu, Shuzi and Cheng, Xueqi},

  booktitle={UAI},

  volume={14},

  pages={449--458},

  year={2014}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->