File size: 32,354 Bytes
4875efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
---

language:
- en
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:78704
- loss:PListMLELoss
base_model: microsoft/MiniLM-L12-H384-uncased
datasets:
- microsoft/ms_marco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
  emissions: 91.76522350814476
  energy_consumed: 0.2360811714581987
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.882
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.5177
      name: Map
    - type: mrr@10
      value: 0.5097
      name: Mrr@10
    - type: ndcg@10
      value: 0.5896
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.3178
      name: Map
    - type: mrr@10
      value: 0.5947
      name: Mrr@10
    - type: ndcg@10
      value: 0.3558
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.6038
      name: Map
    - type: mrr@10
      value: 0.6118
      name: Mrr@10
    - type: ndcg@10
      value: 0.6704
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.4797
      name: Map
    - type: mrr@10
      value: 0.5721
      name: Mrr@10
    - type: ndcg@10
      value: 0.5386
      name: Ndcg@10
---


# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import CrossEncoder



# Download from the 🤗 Hub

model = CrossEncoder("tomaarsen/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-plistmle-softmax")

# Get scores for pairs of texts

pairs = [

    ['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],

    ['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],

    ['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],

]

scores = model.predict(pairs)

print(scores.shape)

# (3,)



# Or rank different texts based on similarity to a single text

ranks = model.rank(

    'How many calories in an egg',

    [

        'There are on average between 55 and 80 calories in an egg depending on its size.',

        'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',

        'Most of the calories in an egg come from the yellow yolk in the center.',

    ]

)

# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json

  {

      "at_k": 10,

      "always_rerank_positives": true

  }

  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |

|:------------|:---------------------|:---------------------|:---------------------|

| map         | 0.5177 (+0.0281)     | 0.3178 (+0.0568)     | 0.6038 (+0.1842)     |

| mrr@10      | 0.5097 (+0.0322)     | 0.5947 (+0.0949)     | 0.6118 (+0.1851)     |

| **ndcg@10** | **0.5896 (+0.0492)** | **0.3558 (+0.0308)** | **0.6704 (+0.1697)** |



#### Cross Encoder Nano BEIR



* Dataset: `NanoBEIR_R100_mean`

* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [
          "msmarco",

          "nfcorpus",

          "nq"

      ],

      "rerank_k": 100,

      "at_k": 10,

      "always_rerank_positives": true

  }

  ```


| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.4797 (+0.0897)     |
| mrr@10      | 0.5721 (+0.1040)     |
| **ndcg@10** | **0.5386 (+0.0832)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### ms_marco



* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)

* Size: 78,704 training samples

* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                                           | docs                                                                                   | labels                                                                                 |

  |:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|

  | type    | string                                                                                          | list                                                                                   | list                                                                                   |

  | details | <ul><li>min: 10 characters</li><li>mean: 34.08 characters</li><li>max: 109 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |

* Samples:

  | query                                          | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |

  |:-----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|

  | <code>what is ha</code>                        | <code>['1 ha. interjection \\ˈhae\\. ˈhä. —tweet used especially to express surprise or a feeling of pleasure that you have when you do something or find out about. something Full Definition of HA. —used especially to express surprise, joy, or triumph. See ha defined for English-language learners.', 'Ha-ha protecting the lawn at Heaton Hall, Manchester. Note how the wall disappears as it curves away to the right of the picture. A ha-ha is a recessed landscape design element that creates a vertical barrier whilst preserving an uninterrupted view of the landscape beyond. The design includes a turfed incline which slopes downward to a sharply vertical face, typically a masonry retaining wall. Ha-has are used in landscape design to prevent access to a garden, for example by grazing livestock, without obstructing views. In security design, the element is used to deter vehicular access to a site while minimizing visual obstruction', 'The doctors said they are afraid of HA-MRSA. Why is it so scary?...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>salary for kinesiology degree</code>     | <code>['Coaches. Coaching is another common career option for those holding a degree in kinesiology. Athletic coaches made an average annual salary of $35,950, as of May 2010, according to the bureau, while the middle 50 percent made between $18,800 and $43,930 annually.', "Athletic Trainers. One common career option for those holding a bachelor's degree in kinesiology is a career in the athletic training field. Athletic trainers made an average annual salary of $44,030, as of May 2010, according to the U.S. Bureau of Labor Statistics.", 'Kinesiologist salary. A newly graduated kinesiologist may receive a yearly minimum pay of around $20,000. This average will increase significantly after a year. As a matter of fact a kinesiologist can receive up to around $80,000 yearly. The median average salary of all kinesiologists is around $46,000 per annum.', 'Salary of starting kinesiologist in Georgia ranges from $29,592 – $44,387. The average kinesiology wage ranges from $35,933 – $53,899 and the t...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>average temperatures owensboro ky</code> | <code>['2.8. The highest average temperature in Owensboro is August at 79.5 degrees. The coldest average temperature in Owensboro is February at 37 degrees. The most monthly precipitation in Owensboro occurs in September with 4 inches. The Owensboro weather information is based on the average of the previous 3-7 years of data. Loading...', 'Most / Least Educated Cities in KY. The average temperature of Owensboro is 56.97°F, which is higher than the Kentucky average temperature of 55.62°F and is higher than the national average temperature of 54.45°F.', 'Owensboro, Kentucky, gets 45 inches of rain per year. The US average is 37. Snowfall is 10 inches. The average US city gets 25 inches of snow per year. The number of days with any measurable precipitation is 103. On average, there are 202 sunny days per year in Owensboro, Kentucky. The July high is around 90 degrees. The January low is 25.']</code>                                                                                                           | <code>[1, 0, 0]</code>            |

* Loss: [<code>PListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#plistmleloss) with these parameters:

  ```json

  {

      "lambda_weight": "sentence_transformers.cross_encoder.losses.PListMLELoss.PListMLELambdaWeight",
      "activation_fct": "torch.nn.modules.linear.Identity",

      "mini_batch_size": 16,

      "respect_input_order": true

  }

  ```


### Evaluation Dataset

#### ms_marco



* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)

* Size: 1,000 evaluation samples

* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                                         | docs                                                                                   | labels                                                                                 |

  |:--------|:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|

  | type    | string                                                                                        | list                                                                                   | list                                                                                   |

  | details | <ul><li>min: 8 characters</li><li>mean: 33.76 characters</li><li>max: 90 characters</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> |

* Samples:

  | query                                                   | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |

  |:--------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|

  | <code>meaning of regional value content</code>          | <code>['Regional Value Content Some specific rules of origin require that a good have a minimum regional value content, meaning that a certain percentage of the value of the goods must be from North America. There are two formulas for calculating the regional value content. TV. Where RVC is the regional value content, expressed as a percentage; TV is the transaction value of the good adjusted to an FOB basis; and VNM is the value of non-originating material used by the producer in the production of the good.', 'Regional Value Content: For goods subject to a regional value content rule of origin, please refer to Regional Value content (Explanatory Material and Article 402), for an explanation of regional value content rules of origin. In the two above situations, no tariff shift is possible because of how the goods were classified. Goods in this situation may obtain NAFTA tariff preference if they have 50 or 60 percent North American value content, depending on method used. Refer to Regional ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>how long does it take to get an irs refund</code> | <code>['Essentially, they’re saying most people will get their refunds in less than 21 days, but there won’t be any schedules they will follow this year. The IRS provides these tips to tax preparers to get the fastest tax refund: 1  File an accurate tax return. 2  Efile your tax return. The IRS eliminated the refund schedules that were used in prior years for both direct deposit and mailed refunds. The guideline the IRS is using in 2015 for filing your 2014 tax return is: Don’t count on getting your refund by a certain date to make major purchases or pay other financial obligations. Even though the IRS issues most refunds in less than 21 days, it’s possible your tax return may require additional review and take longer', 'If you file a paper return, the IRS says you should allow about six weeks to receive your refund. If you file Form 8379, Injured Spouse Allocation, it could take up to 14 weeks to process your tax return. ', 'Tax refunds are normally issued within approximately 21 days if yo...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>calculate margin on cost to retail</code>         | <code>['The formula for calculating retail margin is the sales price of an item minus COGS, divided by the sales price, multiplied by 100. If you sell an item at $20 and paid $10 to acquire it and sell it, your retail margin is $10 divided by $20, or 50 percent. You subtract your COGS from your desired sales price in the same way, but then divide that amount by your COGS. If your target price is $20 and your COGS are $10, your markup is $10 divided by $10, or 100 percent. Thus, to achieve a 50 percent margin on an item that costs you $10, you need a 100 percent markup.', 'This gives you a 70 percent cost-to-retail ratio. For the year, you book $336,000 in net sales. Your cost of goods sold under the retail method is 70 percent of net sales, or $235,200. Your gross profit is $100,800, which is 30 percent of net sales. You can shortcut the calculation of gross profit margin by subtracting your cost-to-retail percentage of 70 percent from 100 percent. While easy enough to calculate, the gross m...</code> | <code>[1, 1, 0, 0, 0, ...]</code> |

* Loss: [<code>PListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#plistmleloss) with these parameters:

  ```json

  {

      "lambda_weight": "sentence_transformers.cross_encoder.losses.PListMLELoss.PListMLELambdaWeight",
      "activation_fct": "torch.nn.modules.linear.Identity",

      "mini_batch_size": 16,

      "respect_input_order": true

  }

  ```


### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step     | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |

|:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|

| -1         | -1       | -             | -               | 0.0785 (-0.4620)         | 0.2441 (-0.0809)          | 0.0473 (-0.4533)     | 0.1233 (-0.3321)           |

| 0.0002     | 1        | 2.2881        | -               | -                        | -                         | -                    | -                          |

| 0.0508     | 250      | 2.2177        | -               | -                        | -                         | -                    | -                          |

| 0.1016     | 500      | 2.0172        | 1.8991          | 0.3929 (-0.1475)         | 0.2715 (-0.0535)          | 0.3910 (-0.1096)     | 0.3518 (-0.1036)           |

| 0.1525     | 750      | 1.8769        | -               | -                        | -                         | -                    | -                          |

| 0.2033     | 1000     | 1.8053        | 1.7602          | 0.5109 (-0.0296)         | 0.3391 (+0.0140)          | 0.6059 (+0.1052)     | 0.4853 (+0.0299)           |

| 0.2541     | 1250     | 1.7566        | -               | -                        | -                         | -                    | -                          |

| 0.3049     | 1500     | 1.7298        | 1.7028          | 0.5152 (-0.0253)         | 0.3334 (+0.0084)          | 0.6332 (+0.1326)     | 0.4939 (+0.0385)           |

| 0.3558     | 1750     | 1.7261        | -               | -                        | -                         | -                    | -                          |

| 0.4066     | 2000     | 1.6907        | 1.7166          | 0.5441 (+0.0037)         | 0.3571 (+0.0321)          | 0.6231 (+0.1224)     | 0.5081 (+0.0527)           |

| 0.4574     | 2250     | 1.6579        | -               | -                        | -                         | -                    | -                          |

| 0.5082     | 2500     | 1.6599        | 1.6482          | 0.5434 (+0.0030)         | 0.3284 (+0.0034)          | 0.6008 (+0.1001)     | 0.4909 (+0.0355)           |

| 0.5591     | 2750     | 1.6467        | -               | -                        | -                         | -                    | -                          |

| 0.6099     | 3000     | 1.6489        | 1.6266          | 0.5541 (+0.0137)         | 0.3514 (+0.0264)          | 0.6354 (+0.1347)     | 0.5136 (+0.0583)           |

| 0.6607     | 3250     | 1.6538        | -               | -                        | -                         | -                    | -                          |

| **0.7115** | **3500** | **1.6246**    | **1.6389**      | **0.5896 (+0.0492)**     | **0.3558 (+0.0308)**      | **0.6704 (+0.1697)** | **0.5386 (+0.0832)**       |

| 0.7624     | 3750     | 1.6164        | -               | -                        | -                         | -                    | -                          |

| 0.8132     | 4000     | 1.6139        | 1.6174          | 0.5639 (+0.0235)         | 0.3358 (+0.0108)          | 0.5988 (+0.0981)     | 0.4995 (+0.0441)           |

| 0.8640     | 4250     | 1.6283        | -               | -                        | -                         | -                    | -                          |

| 0.9148     | 4500     | 1.6265        | 1.5999          | 0.5737 (+0.0333)         | 0.3412 (+0.0161)          | 0.6161 (+0.1154)     | 0.5103 (+0.0550)           |

| 0.9656     | 4750     | 1.5755        | -               | -                        | -                         | -                    | -                          |

| -1         | -1       | -             | -               | 0.5896 (+0.0492)         | 0.3558 (+0.0308)          | 0.6704 (+0.1697)     | 0.5386 (+0.0832)           |



* The bold row denotes the saved checkpoint.



### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.236 kWh

- **Carbon Emitted**: 0.092 kg of CO2

- **Hours Used**: 0.882 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.5.0.dev0

- Transformers: 4.49.0

- PyTorch: 2.6.0+cu124

- Accelerate: 1.5.1

- Datasets: 3.3.2

- Tokenizers: 0.21.0



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### PListMLELoss

```bibtex

@inproceedings{lan2014position,

  title={Position-Aware ListMLE: A Sequential Learning Process for Ranking.},

  author={Lan, Yanyan and Zhu, Yadong and Guo, Jiafeng and Niu, Shuzi and Cheng, Xueqi},

  booktitle={UAI},

  volume={14},

  pages={449--458},

  year={2014}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->