File size: 32,450 Bytes
fc6f4f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
---

language:
- en
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:78704
- loss:PListMLELoss
base_model: microsoft/MiniLM-L12-H384-uncased
datasets:
- microsoft/ms_marco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
  emissions: 91.35802448505943
  energy_consumed: 0.23503358481577002
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.881
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.4779
      name: Map
    - type: mrr@10
      value: 0.4676
      name: Mrr@10
    - type: ndcg@10
      value: 0.5461
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.3322
      name: Map
    - type: mrr@10
      value: 0.5765
      name: Mrr@10
    - type: ndcg@10
      value: 0.3701
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.5906
      name: Map
    - type: mrr@10
      value: 0.5981
      name: Mrr@10
    - type: ndcg@10
      value: 0.6559
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.4669
      name: Map
    - type: mrr@10
      value: 0.5474
      name: Mrr@10
    - type: ndcg@10
      value: 0.524
      name: Ndcg@10
---


# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import CrossEncoder



# Download from the 🤗 Hub

model = CrossEncoder("tomaarsen/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-plistmle-sum-to-1")

# Get scores for pairs of texts

pairs = [

    ['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],

    ['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],

    ['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],

]

scores = model.predict(pairs)

print(scores.shape)

# (3,)



# Or rank different texts based on similarity to a single text

ranks = model.rank(

    'How many calories in an egg',

    [

        'There are on average between 55 and 80 calories in an egg depending on its size.',

        'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',

        'Most of the calories in an egg come from the yellow yolk in the center.',

    ]

)

# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json

  {

      "at_k": 10,

      "always_rerank_positives": true

  }

  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |

|:------------|:---------------------|:---------------------|:---------------------|

| map         | 0.4779 (-0.0116)     | 0.3322 (+0.0712)     | 0.5906 (+0.1710)     |

| mrr@10      | 0.4676 (-0.0099)     | 0.5765 (+0.0767)     | 0.5981 (+0.1714)     |

| **ndcg@10** | **0.5461 (+0.0057)** | **0.3701 (+0.0450)** | **0.6559 (+0.1552)** |



#### Cross Encoder Nano BEIR



* Dataset: `NanoBEIR_R100_mean`

* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [
          "msmarco",

          "nfcorpus",

          "nq"

      ],

      "rerank_k": 100,

      "at_k": 10,

      "always_rerank_positives": true

  }

  ```


| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.4669 (+0.0768)     |
| mrr@10      | 0.5474 (+0.0794)     |
| **ndcg@10** | **0.5240 (+0.0686)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### ms_marco



* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)

* Size: 78,704 training samples

* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                                          | docs                                                                                   | labels                                                                                 |

  |:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|

  | type    | string                                                                                         | list                                                                                   | list                                                                                   |

  | details | <ul><li>min: 11 characters</li><li>mean: 33.5 characters</li><li>max: 113 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |

* Samples:

  | query                                                        | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |

  |:-------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|

  | <code>what does it cost to remove a tree stump</code>        | <code>['Stump removal costs will vary depending on a variety of things, most notably whether you do it yourself or hire a professional. By learning about the costs and prices associated with removing a tree stump, you will avoid unpleasant surprises. Learn more about stump removal prices with our cost guide below. The average cost to remove a tree stump ranges from $60 to $350 per stump, depending on various factors like size. The average removal cost breaks down to approximately $2 to $3 per diameter of the stump. If you do it yourself, it may only cost you about $75 to $150.', 'Get an INSTANT estimate of the cost to Grind a Large Tree Stump! Our free calculator uses recent, trusted data to estimate costs for your Large Stump Grinding project. For a basic 1 stump project in zip code 47474, the benchmark cost to Grind a Large Tree Stump ranges between $87.22 - $150.54 per stump.', 'Tree limb removal costs vary, but it is usually between $50 and $75. Additional services that may be added on f...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>what is the currency used in tenerife</code>           | <code>['Language: The language spoken in Tenerife is Spanish. Currency: The currency used in Tenerife is Euro (€). Local time: Tenerife is 1 hour ahead of GMT/UK time. Fly to: Tenerife has two airports. Tenerife South, near the island’s most popular resorts, is larger and busier than Tenerife North, which is about 11km west of the capital. Tenerife is the largest and most developed Canary Island. Attractive beaches, watersports and exciting adventures to Loro Parque, Siam Park and the cliffs of Los Gigantes make holidays to Tenerife popular year after year, offering activities for everyone to enjoy.', 'Due to Tenerife being a part of Spain, the currency is the Euro. 1 The Pegged Exchange Rate and Modern Money Markets A pegged exchange rate is used when a government fixes the exchange rate of its currency for other currencies, and is also called a fixed exchange rate.', 'Santa Cruz The capital of Tenerife is Santa Cruz de Tenerife which is also, together with Las Palmas on Gran Canaria, the c...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>what is the average salary for a tax consultant</code> | <code>['According to a salary survey, a tax consultant earns almost $325,000 per year on an average. This is applicable for the period 2008 to 2012. And at present, the average salary for a tax consultant in UK is £38,500. In this nation, working 250 days a year and 8 hours a day fetches an hourly rate of £20.18. Overall, the hourly rate actually depends on how much messy the work is and how highly qualified a tax consultant is! The factors that affect the hourly pay rate for tax consultant are the area in which the consultant is operating, experience level, complexity of tax return, and the type of company for whom the service is provided. A CPA candidate or a staff bookkeeper would get almost $65-$85 per hour for sorting out the receipts.', 'With regard to age and impact on salary for a Tax Consultant, a statistical average weighting (that is based on how salary varies by age and not for a specific job which may vary considerably) suggests these figures: £30,560 for a worker in their 20s, ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

* Loss: [<code>PListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#plistmleloss) with these parameters:

  ```json

  {

      "lambda_weight": "sentence_transformers.cross_encoder.losses.PListMLELoss.PListMLELambdaWeight",
      "activation_fct": "torch.nn.modules.linear.Identity",

      "mini_batch_size": 16,

      "respect_input_order": true

  }

  ```


### Evaluation Dataset

#### ms_marco



* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)

* Size: 1,000 evaluation samples

* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                                          | docs                                                                                   | labels                                                                                 |

  |:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|

  | type    | string                                                                                         | list                                                                                   | list                                                                                   |

  | details | <ul><li>min: 9 characters</li><li>mean: 33.37 characters</li><li>max: 105 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |

* Samples:

  | query                                                           | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |

  |:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|

  | <code>what is mosfet transistor</code>                          | <code>['Mosfet Transistor. A MOSFET transistor is a semiconductor device which is widely used to switch the amplification signals in the electronic devices. MOSFET can be expanded metal-oxide-semiconductor field-effect transistor that is used to influence the flow of electric charges by influencing the flow of the charges to greater extent. The major advantage of the MOSFET transistor is that it uses low power for accomplishing its purpose and the dissipation of power in terms of loss is very llittle, which makes it a major component in the modern computers and electronic devices like the cell phones, digital watches, small robotic toys and calculators.', 'A transistor is used to amplify and switch electronic signals and electrical power. They are used in a variety of circuits and they come in many different shapes. You can use a transistor as a switch or you can use a transistor as an amplifier. Metal-oxide-semiconductor field-effect transistor is a type of transistor commonly found in digi...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>what was the most famous native american massacres</code> | <code>["The Massacre at Bear River took place in 1863 when heightened tensions between the Native Americans and federal troops from the California reserves reached a tipping point. Remembering those passed: Patty Timbimboo-Madsen is a descendant of one of the few survivors from the Bear River Massacre which took place in 1863. Native Americans remember 'forgotten' massacre that left 450 dead in vicious attack during the Civil War. By Daily Mail Reporter. Published: 00:47 EST, 30 January 2013 | Updated: 01:00 EST, 30 January 2013.", "While the Native Americans had collected a few firearms from various raids on other villages, their weapons were nothing compared to the guns used by the soldiers. Because this battle took place in the midst of the Civil War, Colonel Connor's men from the California Volunteers were armed with federally-issued guns. Native Americans remember 'forgotten' massacre that left 450 dead in vicious attack during the Civil War. By Daily Mail Reporter. Published: 00:47 EST...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>where is canberra located</code>                          | <code>["168 pages on this wiki. Canberra is the capital city of Australia and with a population of over 332,000, is Australia's largest inland city. The city is located at the northern end of the Australian Capital Territory, 300 kilometres (190 mi) southwest of Sydney, and 650 kilometres (400 mi) north-east of Melbourne. ", "it looks as though the author of this plan ... had been carefully reading books upon town planning without having much more theoretical knowledge to go upon. Canberra, in the Australian Capital Territory, is Australia's capital city. ", 'Canberra is a city/town with a medium population in the state/region of Australian Capital Territory, Australia which is located in the continent/region of Oceania. Cities, towns and places near Canberra include City, Reid, Braddon and Turner. ', 'History [edit]. Canberra was established in 1913 as the capital for the newly federated Australian nation. The ACT was excised from New South Wales and put under the control of the federal gov...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

* Loss: [<code>PListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#plistmleloss) with these parameters:

  ```json

  {

      "lambda_weight": "sentence_transformers.cross_encoder.losses.PListMLELoss.PListMLELambdaWeight",
      "activation_fct": "torch.nn.modules.linear.Identity",

      "mini_batch_size": 16,

      "respect_input_order": true

  }

  ```


### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step     | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |

|:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|

| -1         | -1       | -             | -               | 0.0293 (-0.5111)         | 0.2379 (-0.0872)          | 0.0249 (-0.4757)     | 0.0974 (-0.3580)           |

| 0.0002     | 1        | 2.1926        | -               | -                        | -                         | -                    | -                          |

| 0.0508     | 250      | 2.1           | -               | -                        | -                         | -                    | -                          |

| 0.1016     | 500      | 1.9636        | 1.9124          | 0.2430 (-0.2975)         | 0.2494 (-0.0756)          | 0.3521 (-0.1486)     | 0.2815 (-0.1739)           |

| 0.1525     | 750      | 1.9151        | -               | -                        | -                         | -                    | -                          |

| 0.2033     | 1000     | 1.8844        | 1.8574          | 0.4329 (-0.1076)         | 0.3198 (-0.0053)          | 0.6016 (+0.1009)     | 0.4514 (-0.0040)           |

| 0.2541     | 1250     | 1.8748        | -               | -                        | -                         | -                    | -                          |

| 0.3049     | 1500     | 1.8636        | 1.8745          | 0.5198 (-0.0206)         | 0.3698 (+0.0447)          | 0.6365 (+0.1358)     | 0.5087 (+0.0533)           |

| 0.3558     | 1750     | 1.854         | -               | -                        | -                         | -                    | -                          |

| 0.4066     | 2000     | 1.8437        | 1.8239          | 0.4936 (-0.0469)         | 0.3820 (+0.0570)          | 0.6065 (+0.1059)     | 0.4940 (+0.0387)           |

| 0.4574     | 2250     | 1.843         | -               | -                        | -                         | -                    | -                          |

| 0.5082     | 2500     | 1.8509        | 1.8222          | 0.5435 (+0.0031)         | 0.3720 (+0.0469)          | 0.6201 (+0.1195)     | 0.5119 (+0.0565)           |

| 0.5591     | 2750     | 1.842         | -               | -                        | -                         | -                    | -                          |

| 0.6099     | 3000     | 1.83          | 1.8252          | 0.5303 (-0.0101)         | 0.3629 (+0.0379)          | 0.6177 (+0.1171)     | 0.5037 (+0.0483)           |

| 0.6607     | 3250     | 1.8293        | -               | -                        | -                         | -                    | -                          |

| **0.7115** | **3500** | **1.8254**    | **1.8177**      | **0.5461 (+0.0057)**     | **0.3701 (+0.0450)**      | **0.6559 (+0.1552)** | **0.5240 (+0.0686)**       |

| 0.7624     | 3750     | 1.8163        | -               | -                        | -                         | -                    | -                          |

| 0.8132     | 4000     | 1.8338        | 1.8092          | 0.5555 (+0.0151)         | 0.3650 (+0.0400)          | 0.6347 (+0.1340)     | 0.5184 (+0.0630)           |

| 0.8640     | 4250     | 1.8233        | -               | -                        | -                         | -                    | -                          |

| 0.9148     | 4500     | 1.8127        | 1.8116          | 0.5512 (+0.0108)         | 0.3737 (+0.0487)          | 0.6424 (+0.1417)     | 0.5224 (+0.0671)           |

| 0.9656     | 4750     | 1.8255        | -               | -                        | -                         | -                    | -                          |

| -1         | -1       | -             | -               | 0.5461 (+0.0057)         | 0.3701 (+0.0450)          | 0.6559 (+0.1552)     | 0.5240 (+0.0686)           |



* The bold row denotes the saved checkpoint.



### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.235 kWh

- **Carbon Emitted**: 0.091 kg of CO2

- **Hours Used**: 0.881 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.5.0.dev0

- Transformers: 4.49.0

- PyTorch: 2.6.0+cu124

- Accelerate: 1.5.1

- Datasets: 3.3.2

- Tokenizers: 0.21.0



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### PListMLELoss

```bibtex

@inproceedings{lan2014position,

  title={Position-Aware ListMLE: A Sequential Learning Process for Ranking.},

  author={Lan, Yanyan and Zhu, Yadong and Guo, Jiafeng and Niu, Shuzi and Cheng, Xueqi},

  booktitle={UAI},

  volume={14},

  pages={449--458},

  year={2014}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->