File size: 32,642 Bytes
0dd8013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
---

language:
- en
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:78704
- loss:RankNetLoss
base_model: microsoft/MiniLM-L12-H384-uncased
datasets:
- microsoft/ms_marco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
  emissions: 88.25456122369188
  energy_consumed: 0.22704941375061585
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.737
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.5117
      name: Map
    - type: mrr@10
      value: 0.5006
      name: Mrr@10
    - type: ndcg@10
      value: 0.5666
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.3404
      name: Map
    - type: mrr@10
      value: 0.583
      name: Mrr@10
    - type: ndcg@10
      value: 0.3866
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.5205
      name: Map
    - type: mrr@10
      value: 0.5252
      name: Mrr@10
    - type: ndcg@10
      value: 0.5972
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.4575
      name: Map
    - type: mrr@10
      value: 0.5362
      name: Mrr@10
    - type: ndcg@10
      value: 0.5168
      name: Ndcg@10
---


# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import CrossEncoder



# Download from the 🤗 Hub

model = CrossEncoder("tomaarsen/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-ranknetloss")

# Get scores for pairs of texts

pairs = [

    ['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],

    ['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],

    ['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],

]

scores = model.predict(pairs)

print(scores.shape)

# (3,)



# Or rank different texts based on similarity to a single text

ranks = model.rank(

    'How many calories in an egg',

    [

        'There are on average between 55 and 80 calories in an egg depending on its size.',

        'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',

        'Most of the calories in an egg come from the yellow yolk in the center.',

    ]

)

# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json

  {

      "at_k": 10,

      "always_rerank_positives": true

  }

  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |

|:------------|:---------------------|:---------------------|:---------------------|

| map         | 0.5117 (+0.0221)     | 0.3404 (+0.0794)     | 0.5205 (+0.1009)     |

| mrr@10      | 0.5006 (+0.0231)     | 0.5830 (+0.0832)     | 0.5252 (+0.0985)     |

| **ndcg@10** | **0.5666 (+0.0262)** | **0.3866 (+0.0615)** | **0.5972 (+0.0965)** |



#### Cross Encoder Nano BEIR



* Dataset: `NanoBEIR_R100_mean`

* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [
          "msmarco",

          "nfcorpus",

          "nq"

      ],

      "rerank_k": 100,

      "at_k": 10,

      "always_rerank_positives": true

  }

  ```


| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.4575 (+0.0675)     |
| mrr@10      | 0.5362 (+0.0682)     |
| **ndcg@10** | **0.5168 (+0.0614)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### ms_marco



* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)

* Size: 78,704 training samples

* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                                          | docs                                                                                   | labels                                                                                 |

  |:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|

  | type    | string                                                                                         | list                                                                                   | list                                                                                   |

  | details | <ul><li>min: 11 characters</li><li>mean: 32.93 characters</li><li>max: 95 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |

* Samples:

  | query                                                                       | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |

  |:----------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|

  | <code>what does vegan mean</code>                                           | <code>['A vegan, a person who practices veganism, is an individual who actively avoids the use of animal products for food, clothing or any other purpose. As with many diets and lifestyles, not all vegans approach animal product avoidance in the same ways. For example, some vegans completely avoid all animal by-products, while others consider it acceptable to use honey, silk, and other by-products produced from insects.', 'Fruitarian: Eats only raw fruit, including raw nuts and seeds. Vegan. Does not eat dairy products, eggs, or any other animal product. So in a nutshell, a vegetarian diet excludes flesh, but includes other animal products: A vegan diet is one that excludes all animal products. And I have to say that I have met very few vegans who stop with what they put in their mouths. ', 'Animal Ingredients and Their Alternatives. Adopting a vegan diet means saying “no” to cruelty to animals and environmental destruction and “yes” to compassion and good health. It also means paying attent...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>difference between viral and bacterial conjunctivitis symptoms</code> | <code>["Viral and bacterial conjunctivitis. Viral conjunctivitis and bacterial conjunctivitis may affect one or both eyes. Viral conjunctivitis usually produces a watery discharge. Bacterial conjunctivitis often produces a thicker, yellow-green discharge. Both types can be associated with colds or symptoms of a respiratory infection, such as a sore throat. Both viral and bacterial types are very contagious. They are spread through direct or indirect contact with the eye secretions of someone who's infected", 'A Honor Society of Nursing (STTI) answered. Viral and bacterial conjunctivitis are similar, but differ in several key ways. First, bacterial conjunctivitis can be cured with antibiotics, while the viral form cannot. Second, there is a slight variation in symptoms. With viral conjunctivitis, the discharge from the eye is clearer and less thick than with the bacterial infection. Viral conjunctivitis can also cause painful swelling in the lymph node nearest the ear, a symptom not experienc...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>can single member llc be taxed as s corp</code>                       | <code>['A single-member limited liability company, as a solely owned LLC is called, gives the owner a choice of how to be taxed -- as a sole proprietorship, an S corporation or a C corporation. The legal structure of the business itself doesn’t change with any of the choices. Under an S corporation classification, a single-member LLC needs to have a large enough profit in excess of the owner’s salary to realize any tax savings on passive income.', 'An S corp may own up to 100 percent of an LLC, or limited liability company. While all but single-member LLCs cannot be shareholders in S corporations, the reverse -- an S corporation owning an LLC -- is legal. The similarity of tax treatment for S corps and LLCs eliminates most of the common concerns about IRS issues. There is, however, one way for an LLC to own stock in an S corp. A single member LLC, taxed as a sole proprietorship, is called a disregarded entity by the IRS. Treated like an unincorporated individual, this LLC could own stock in ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

* Loss: [<code>RankNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#ranknetloss) with these parameters:

  ```json

  {

      "weighting_scheme": "sentence_transformers.cross_encoder.losses.LambdaLoss.NoWeightingScheme",
      "k": null,

      "sigma": 1.0,

      "eps": 1e-10,

      "reduction_log": "binary",

      "activation_fct": "torch.nn.modules.linear.Identity",

      "mini_batch_size": 16

  }

  ```


### Evaluation Dataset

#### ms_marco



* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)

* Size: 1,000 evaluation samples

* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                                          | docs                                                                                   | labels                                                                                 |

  |:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|

  | type    | string                                                                                         | list                                                                                   | list                                                                                   |

  | details | <ul><li>min: 11 characters</li><li>mean: 33.63 characters</li><li>max: 99 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |

* Samples:

  | query                                               | docs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                            |

  |:----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|

  | <code>define monogenic trait</code>                 | <code>['An allele is a version of a gene. For example, in fruitflies there is a gene which determines eye colour: one allele gives red eyes, and another gives white eyes; it is the same *gene*, just different versions of that gene. A monogenic trait is one which is encoded by a single gene. e.g. - cystic fibrosis in humans. There is a single gene which determines this trait: the wild-type allele is healthy, while the disease allele gives you cystic fibrosis', 'Abstract. Monogenic inheritance refers to genetic control of a phenotype or trait by a single gene. For a monogenic trait, mutations in one (dominant) or both (recessive) copies of the gene are sufficient for the trait to be expressed. Digenic inheritance refers to mutation on two genes interacting to cause a genetic phenotype or disease. Triallelic inheritance is a special case of digenic inheritance that requires homozygous mutations at one locus and heterozygous mutations at a second locus to express a phenotype.', 'A trait that is ...</code> | <code>[1, 1, 0, 0, 0, ...]</code> |

  | <code>behavioral theory definition</code>           | <code>["Not to be confused with Behavioralism. Behaviorism (or behaviourism) is an approach to psychology that focuses on an individual's behavior. It combines elements of philosophy, methodology, and psychological theory", 'The initial assumption is that behavior can be explained and further described using behavioral theories. For instance, John Watson and B.F. Skinner advocate the theory that behavior can be acquired through conditioning. Also known as general behavior theory. BEHAVIOR THEORY: Each behavioral theory is an advantage to learning, because it provides teachers with a new and different approach.. No related posts. ', 'behaviorism. noun be·hav·ior·ism. : a school of psychology that takes the objective evidence of behavior (as measured responses to stimuli) as the only concern of its research and the only basis of its theory without reference to conscious experience—compare cognitive psychology. : a school of psychology that takes the objective evidence of behavior (as measured ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

  | <code>What is a disease that is pleiotropic?</code> | <code>['Unsourced material may be challenged and removed. (September 2013). Pleiotropy occurs when one gene influences two or more seemingly unrelated phenotypic traits, an example being phenylketonuria, which is a human disease that affects multiple systems but is caused by one gene defect. Consequently, a mutation in a pleiotropic gene may have an effect on some or all traits simultaneously. The underlying mechanism is that the gene codes for a product that is, for example, used by various cells, or has a signaling function on various targets. A classic example of pleiotropy is the human disease phenylketonuria (PKU).', 'Pleiotropic, autosomal dominant disorder affecting connective tissue: Related Diseases. Pleiotropic, autosomal dominant disorder affecting connective tissue: Pleiotropic, autosomal dominant disorder affecting connective tissue is listed as a type of (or associated with) the following medical conditions in our database: 1  Heart conditions. Office of Rare Diseases (ORD) of ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |

* Loss: [<code>RankNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#ranknetloss) with these parameters:

  ```json

  {

      "weighting_scheme": "sentence_transformers.cross_encoder.losses.LambdaLoss.NoWeightingScheme",
      "k": null,

      "sigma": 1.0,

      "eps": 1e-10,

      "reduction_log": "binary",

      "activation_fct": "torch.nn.modules.linear.Identity",

      "mini_batch_size": 16

  }

  ```


### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step     | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |

|:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|

| -1         | -1       | -             | -               | 0.0300 (-0.5104)         | 0.2528 (-0.0723)          | 0.0168 (-0.4839)     | 0.0999 (-0.3555)           |

| 0.0002     | 1        | 0.9988        | -               | -                        | -                         | -                    | -                          |

| 0.0508     | 250      | 0.9926        | -               | -                        | -                         | -                    | -                          |

| 0.1016     | 500      | 0.8625        | 0.7519          | 0.4085 (-0.1319)         | 0.3086 (-0.0164)          | 0.4801 (-0.0205)     | 0.3991 (-0.0563)           |

| 0.1525     | 750      | 0.7698        | -               | -                        | -                         | -                    | -                          |

| 0.2033     | 1000     | 0.736         | 0.6956          | 0.4861 (-0.0543)         | 0.2964 (-0.0286)          | 0.6195 (+0.1188)     | 0.4674 (+0.0120)           |

| 0.2541     | 1250     | 0.7116        | -               | -                        | -                         | -                    | -                          |

| 0.3049     | 1500     | 0.7044        | 0.6713          | 0.5369 (-0.0036)         | 0.3516 (+0.0265)          | 0.5804 (+0.0798)     | 0.4896 (+0.0343)           |

| 0.3558     | 1750     | 0.6877        | -               | -                        | -                         | -                    | -                          |

| 0.4066     | 2000     | 0.6727        | 0.6600          | 0.5582 (+0.0178)         | 0.3725 (+0.0474)          | 0.5699 (+0.0693)     | 0.5002 (+0.0448)           |

| 0.4574     | 2250     | 0.6781        | -               | -                        | -                         | -                    | -                          |

| 0.5082     | 2500     | 0.6697        | 0.6538          | 0.5344 (-0.0061)         | 0.3889 (+0.0639)          | 0.5605 (+0.0599)     | 0.4946 (+0.0392)           |

| 0.5591     | 2750     | 0.6523        | -               | -                        | -                         | -                    | -                          |

| **0.6099** | **3000** | **0.6649**    | **0.6471**      | **0.5666 (+0.0262)**     | **0.3866 (+0.0615)**      | **0.5972 (+0.0965)** | **0.5168 (+0.0614)**       |

| 0.6607     | 3250     | 0.659         | -               | -                        | -                         | -                    | -                          |

| 0.7115     | 3500     | 0.6566        | 0.6449          | 0.5744 (+0.0340)         | 0.3637 (+0.0387)          | 0.5469 (+0.0463)     | 0.4950 (+0.0397)           |

| 0.7624     | 3750     | 0.6472        | -               | -                        | -                         | -                    | -                          |

| 0.8132     | 4000     | 0.6553        | 0.6420          | 0.5734 (+0.0329)         | 0.3878 (+0.0628)          | 0.5717 (+0.0710)     | 0.5110 (+0.0556)           |

| 0.8640     | 4250     | 0.6386        | -               | -                        | -                         | -                    | -                          |

| 0.9148     | 4500     | 0.6477        | 0.6347          | 0.5664 (+0.0260)         | 0.3854 (+0.0604)          | 0.5824 (+0.0818)     | 0.5114 (+0.0560)           |

| 0.9656     | 4750     | 0.6493        | -               | -                        | -                         | -                    | -                          |

| -1         | -1       | -             | -               | 0.5666 (+0.0262)         | 0.3866 (+0.0615)          | 0.5972 (+0.0965)     | 0.5168 (+0.0614)           |



* The bold row denotes the saved checkpoint.



### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.227 kWh

- **Carbon Emitted**: 0.088 kg of CO2

- **Hours Used**: 0.737 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.5.0.dev0

- Transformers: 4.49.0

- PyTorch: 2.6.0+cu124

- Accelerate: 1.5.1

- Datasets: 3.3.2

- Tokenizers: 0.21.0



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### RankNetLoss

```bibtex

@inproceedings{burges2005learning,

  title={Learning to rank using gradient descent},

  author={Burges, Chris and Shaked, Tal and Renshaw, Erin and Lazier, Ari and Deeds, Matt and Hamilton, Nicole and Hullender, Greg},

  booktitle={Proceedings of the 22nd international conference on Machine learning},

  pages={89--96},

  year={2005}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->