File size: 46,921 Bytes
45edbe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:90000
- loss:SpladeLoss
- loss:SparseMarginMSELoss
- loss:FlopsLoss
base_model: Luyu/co-condenser-marco
widget:
- text: weather in ljubljana, slovenia fahrenheit
- text: which type of shark is the largest?
- text: "Plan to have the farrier reset your horseâ\x80\x99s shoes approximately every\

    \ six weeks. The shoes should be shaped to the horseâ\x80\x99s feet for a custom\

    \ fit."
- text: what oscars was kudo nominated for
- text: "Answers from Ronald Petersen, M.D. Yes, Alzheimer's disease usually worsens\

    \ slowly. But its speed of progression varies, depending on a person's genetic\

    \ makeup, environmental factors, age at diagnosis and other medical conditions.\

    \ Still, anyone diagnosed with Alzheimer's whose symptoms seem to be progressing\

    \ quickly â\x80\x94 or who experiences a sudden decline â\x80\x94 should see his\

    \ or her doctor."
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 87.59304620021443
  energy_consumed: 0.2253475572552095
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.653
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CoCondenser trained on MS MARCO
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.42
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.66
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.76
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.84
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.42
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.22
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.15200000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08399999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.42
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.66
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.76
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.84
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6312406680654746
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5636904761904762
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5721212783331427
      name: Dot Map@100
    - type: query_active_dims
      value: 21.100000381469727
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9993086953547778
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 157.69065856933594
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9948335410992288
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.44
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.64
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.64
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.68
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.3933333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.336
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.27
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.04389819910134535
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.0987021139802183
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.11414854445866388
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.14007230906638554
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.34454508141466533
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5322222222222223
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.1566157643935124
      name: Dot Map@100
    - type: query_active_dims
      value: 17.920000076293945
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.999412882508476
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 311.4259948730469
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9897966714214976
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.48
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.74
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.8
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.88
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.48
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2533333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16799999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09399999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.46
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.7
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.76
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.84
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6640066557351431
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6205238095238095
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.604249902859187
      name: Dot Map@100
    - type: query_active_dims
      value: 25.100000381469727
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.999177642343835
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 194.18609619140625
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9936378318527159
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.4466666666666666
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.68
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7333333333333334
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7999999999999999
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.4466666666666666
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.28888888888888886
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.21866666666666668
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.14933333333333332
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.3079660663671151
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.4862340379934061
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.5447161814862213
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.6066907696887952
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5465974684050944
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5721455026455027
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.44432898186194736
      name: Dot Map@100
    - type: query_active_dims
      value: 21.3733336130778
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9992997400690297
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 206.63049254462427
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9932301129498518
      name: Corpus Sparsity Ratio
---


# CoCondenser trained on MS MARCO

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [Luyu/co-condenser-marco](https://huggingface.co/Luyu/co-condenser-marco) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space   and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [Luyu/co-condenser-marco](https://huggingface.co/Luyu/co-condenser-marco) <!-- at revision e0cef0ab2410aae0f0994366ddefb5649a266709 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```

SparseEncoder(

  (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 

  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SparseEncoder



# Download from the 🤗 Hub

model = SparseEncoder("tomaarsen/splade-cocondenser-msmarco-margin-mse-minilm")

# Run inference

queries = [

    "what causes aging fast",

]

documents = [

    'UV-A light, specifically, is what mainly causes tanning, skin aging, and cataracts, UV-B causes sunburn, skin aging and skin cancer, and UV-C is the strongest, and therefore most effective at killing microorganisms. Again â\x80\x93 single words and multiple bullets.',

    "Answers from Ronald Petersen, M.D. Yes, Alzheimer's disease usually worsens slowly. But its speed of progression varies, depending on a person's genetic makeup, environmental factors, age at diagnosis and other medical conditions. Still, anyone diagnosed with Alzheimer's whose symptoms seem to be progressing quickly â\x80\x94 or who experiences a sudden decline â\x80\x94 should see his or her doctor.",

    "Bell's palsy and Extreme tiredness and Extreme fatigue (2 causes) Bell's palsy and Extreme tiredness and Hepatitis (2 causes) Bell's palsy and Extreme tiredness and Liver pain (2 causes) Bell's palsy and Extreme tiredness and Lymph node swelling in children (2 causes)",

]

query_embeddings = model.encode_query(queries)

document_embeddings = model.encode_document(documents)

print(query_embeddings.shape, document_embeddings.shape)

# [1, 30522] [3, 30522]



# Get the similarity scores for the embeddings

similarities = model.similarity(query_embeddings, document_embeddings)

print(similarities)

# tensor([[11.2444, 10.6804,  4.3465]])

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | NanoMSMARCO | NanoNFCorpus | NanoNQ    |
|:----------------------|:------------|:-------------|:----------|
| dot_accuracy@1        | 0.42        | 0.44         | 0.48      |

| dot_accuracy@3        | 0.66        | 0.64         | 0.74      |
| dot_accuracy@5        | 0.76        | 0.64         | 0.8       |

| dot_accuracy@10       | 0.84        | 0.68         | 0.88      |
| dot_precision@1       | 0.42        | 0.44         | 0.48      |

| dot_precision@3       | 0.22        | 0.3933       | 0.2533    |
| dot_precision@5       | 0.152       | 0.336        | 0.168     |

| dot_precision@10      | 0.084       | 0.27         | 0.094     |
| dot_recall@1          | 0.42        | 0.0439       | 0.46      |

| dot_recall@3          | 0.66        | 0.0987       | 0.7       |
| dot_recall@5          | 0.76        | 0.1141       | 0.76      |

| dot_recall@10         | 0.84        | 0.1401       | 0.84      |
| **dot_ndcg@10**       | **0.6312**  | **0.3445**   | **0.664** |

| dot_mrr@10            | 0.5637      | 0.5322       | 0.6205    |

| dot_map@100           | 0.5721      | 0.1566       | 0.6042    |

| query_active_dims     | 21.1        | 17.92        | 25.1      |

| query_sparsity_ratio  | 0.9993      | 0.9994       | 0.9992    |

| corpus_active_dims    | 157.6907    | 311.426      | 194.1861  |

| corpus_sparsity_ratio | 0.9948      | 0.9898       | 0.9936    |



#### Sparse Nano BEIR



* Dataset: `NanoBEIR_mean`

* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [

          "msmarco",

          "nfcorpus",

          "nq"

      ]

  }

  ```



| Metric                | Value      |

|:----------------------|:-----------|

| dot_accuracy@1        | 0.4467     |

| dot_accuracy@3        | 0.68       |

| dot_accuracy@5        | 0.7333     |

| dot_accuracy@10       | 0.8        |

| dot_precision@1       | 0.4467     |

| dot_precision@3       | 0.2889     |

| dot_precision@5       | 0.2187     |

| dot_precision@10      | 0.1493     |

| dot_recall@1          | 0.308      |

| dot_recall@3          | 0.4862     |

| dot_recall@5          | 0.5447     |

| dot_recall@10         | 0.6067     |

| **dot_ndcg@10**       | **0.5466** |
| dot_mrr@10            | 0.5721     |

| dot_map@100           | 0.4443     |
| query_active_dims     | 21.3733    |
| query_sparsity_ratio  | 0.9993     |
| corpus_active_dims    | 206.6305   |
| corpus_sparsity_ratio | 0.9932     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 90,000 training samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative                                                                            | score                                                               |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              | float                                                               |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.22 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 79.27 tokens</li><li>max: 247 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 81.15 tokens</li><li>max: 201 tokens</li></ul> | <ul><li>min: -14.32</li><li>mean: 4.62</li><li>max: 21.72</li></ul> |
* Samples:
  | query                                        | positive                                                                                                                                                                                                                                                                                                                                                                                                                      | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | score                            |
  |:---------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
  | <code>most powerful army in the world</code> | <code>U.S. Army Reserve Command You may be asking yourself, “What is the Army Reserve?” The Army is the most powerful and sophisticated military force in the world.</code>                                                                                                                                                                                                                                               | <code>The British Royal Navy was the most powerful sea-going force by the time of World War 1 (1914-1918) and this was well-underst...</code>                                                                                                                                                                                                                                                                                                                                                                                              | <code>2.919867515563965</code>   |
  | <code>define vasomotor</code>                | <code>Define peripheral neuropathy: a disease or degenerative state of the peripheral nerves in which motor, sensory, or vasomotor nerve fibers may be… a disease or degenerative state of the peripheral nerves in which motor, sensory, or vasomotor nerve fibers may be affected and which is marked…</code>                                                                                                           | <code>Vairāgya (Devanagari: वैराग्य, also spelt Vairagya) is a Sanskrit term used in Hindu philosophy that roughly translates as dispassion, detachment, or renunciation, in particular renunciation from the pains and pleasures in the material world (Maya).</code>                                                                                                                                                                                                                                                      | <code>3.0037026405334473</code>  |
  | <code>nitrates definition biology</code>     | <code>In Botany or Plant Biology. By Photosynthesis, the palisade cells make glucose which has many uses including: storage as starch, to make fat, to make cellulose and to make protein. Glucose is converted w…ith mineral slat nitrates to make the protein. Nitrates provide the essential nitrogen to make protein.     The Ribosome, an organelle of the plant cell, manufactures most of the cell's protein.</code> | <code>Almost all inorganic nitrate salts are soluble in water at standard temperature and pressure. A common example of an inorganic nitrate salt is potassium nitrate (saltpeter). A rich source of inorganic nitrate in the human body comes from diets rich in leafy green foods, such as spinach and arugula.It is now believed that dietary nitrate in the form of plant-based foods is converted in the body to nitrite.itrate is a polyatomic ion with the molecular formula NO 3 − and a molecular mass of 62.0049 g/mol.</code> | <code>-1.6804794073104858</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json

  {

      "loss": "SparseMarginMSELoss",

      "lambda_corpus": 0.08,

      "lambda_query": 0.1

  }

  ```

### Evaluation Dataset

#### Unnamed Dataset

* Size: 10,000 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                           | negative                                                                           | score                                                              |
  |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                             | string                                                                             | float                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.01 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 79.8 tokens</li><li>max: 336 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 81.3 tokens</li><li>max: 273 tokens</li></ul> | <ul><li>min: -15.9</li><li>mean: 4.91</li><li>max: 21.67</li></ul> |
* Samples:
  | query                                                     | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | negative                                                                                                                                                                                                                                                                                                                                                                                                                                     | score                            |
  |:----------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
  | <code>femoral artery definition</code>                    | <code>medical Definition of circumflex artery : any of several paired curving arteries: as a: either of two arteries that branch from the deep femoral artery or from the femoral artery itself:</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <code>Femoral vein. The femoral vein is located in the upper thigh and pelvic region of the human body. It travels in close proximity to the femoral artery. This vein is one of the larger vessels in the venous system. Instead of draining deoxygenated blood from specific parts of the body, it receives blood from several significant branches. These include popliteal, the profunda femoris, and the great sapheneous veins.</code> | <code>-0.1968388557434082</code> |
  | <code>what causes mastitis and how do you treat it</code> | <code>Mastitis is an infection of the tissue of the breast that occurs most frequently during the time of breastfeeding. This infection causes pain, swelling, redness, and increased temperature of the breast. It can occur when bacteria, often from the infant's mouth, enter a milk duct through a crack in the nipple. This causes an infection and painful inflammation of the breast.</code>                                                                                                                                                                                                                                                              | <code>Common causes of mastitis include bacteria from the baby’s mouth, bacteria entering via breast injuries (bruising, fissures, cracks in the nipple), milk stasis (milk pooling in the breast), and bacteria from the hands of the mother or health care provider.</code>                                                                                                                                                              | <code>-0.8143405914306641</code> |
  | <code>what is a buck moth</code>                          | <code>Buck moth caterpillars that have a light background color can be confused with both the Nevada buck moth, Hemileuca nevadensis Stretch, and the New England buck moth, Hemileuca lucina Henry Edwards. The larvae of these three species can best be distinguished based on the preferred host plants (Wagner 2005).hey rely on resources that are acquired by the caterpillars (larvae). The caterpillars are robust and can exceed four inches (10 cm) in North America. Figure 4. Adult cecropia moth, Hyalophora cecropia (Linnaeus). Photograph by Pennsylvania Department of Conservation and Natural Resources-Forestry Archive, Bugwood.org.</code> | <code>bucktail that gets talked about quietly in the . privacy of remote cabins. The “Musky-Teer” is a big fish bait that anglers treasure in their collection. You won’t find these at your local bait shop but we’ve been stocking these highly prized baits in all colors for years.</code>                                                                                                                                       | <code>11.004357814788818</code>  |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json

  {

      "loss": "SparseMarginMSELoss",

      "lambda_corpus": 0.08,

      "lambda_query": 0.1

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |

|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|

| 0.0178 | 100  | 501776.8      | -               | -                       | -                        | -                  | -                         |

| 0.0356 | 200  | 9740.8356     | -               | -                       | -                        | -                  | -                         |

| 0.0533 | 300  | 61.9771       | -               | -                       | -                        | -                  | -                         |

| 0.0711 | 400  | 37.6145       | -               | -                       | -                        | -                  | -                         |

| 0.0889 | 500  | 28.8887       | 24.4953         | 0.4878                  | 0.3047                   | 0.5425             | 0.4450                    |

| 0.1067 | 600  | 24.7991       | -               | -                       | -                        | -                  | -                         |

| 0.1244 | 700  | 22.1517       | -               | -                       | -                        | -                  | -                         |

| 0.1422 | 800  | 22.0889       | -               | -                       | -                        | -                  | -                         |

| 0.16   | 900  | 20.7825       | -               | -                       | -                        | -                  | -                         |

| 0.1778 | 1000 | 20.0856       | 18.6383         | 0.5751                  | 0.3303                   | 0.6100             | 0.5051                    |

| 0.1956 | 1100 | 18.6968       | -               | -                       | -                        | -                  | -                         |

| 0.2133 | 1200 | 20.5069       | -               | -                       | -                        | -                  | -                         |

| 0.2311 | 1300 | 19.8162       | -               | -                       | -                        | -                  | -                         |

| 0.2489 | 1400 | 19.1892       | -               | -                       | -                        | -                  | -                         |

| 0.2667 | 1500 | 17.5024       | 18.0698         | 0.5750                  | 0.3281                   | 0.6222             | 0.5084                    |

| 0.2844 | 1600 | 17.7801       | -               | -                       | -                        | -                  | -                         |

| 0.3022 | 1700 | 17.9045       | -               | -                       | -                        | -                  | -                         |

| 0.32   | 1800 | 16.3731       | -               | -                       | -                        | -                  | -                         |

| 0.3378 | 1900 | 16.293        | -               | -                       | -                        | -                  | -                         |

| 0.3556 | 2000 | 16.1167       | 14.5428         | 0.5696                  | 0.3422                   | 0.6232             | 0.5116                    |

| 0.3733 | 2100 | 16.561        | -               | -                       | -                        | -                  | -                         |

| 0.3911 | 2200 | 16.5533       | -               | -                       | -                        | -                  | -                         |

| 0.4089 | 2300 | 14.9371       | -               | -                       | -                        | -                  | -                         |

| 0.4267 | 2400 | 15.565        | -               | -                       | -                        | -                  | -                         |

| 0.4444 | 2500 | 14.2143       | 15.2027         | 0.6071                  | 0.3376                   | 0.6600             | 0.5349                    |

| 0.4622 | 2600 | 13.7188       | -               | -                       | -                        | -                  | -                         |

| 0.48   | 2700 | 14.8554       | -               | -                       | -                        | -                  | -                         |

| 0.4978 | 2800 | 15.1021       | -               | -                       | -                        | -                  | -                         |

| 0.5156 | 2900 | 13.3032       | -               | -                       | -                        | -                  | -                         |

| 0.5333 | 3000 | 13.8999       | 12.9609         | 0.5874                  | 0.3423                   | 0.6562             | 0.5286                    |

| 0.5511 | 3100 | 12.7418       | -               | -                       | -                        | -                  | -                         |

| 0.5689 | 3200 | 12.9422       | -               | -                       | -                        | -                  | -                         |

| 0.5867 | 3300 | 13.6937       | -               | -                       | -                        | -                  | -                         |

| 0.6044 | 3400 | 13.1183       | -               | -                       | -                        | -                  | -                         |

| 0.6222 | 3500 | 12.7998       | 12.2024         | 0.6262                  | 0.3424                   | 0.6771             | 0.5486                    |

| 0.64   | 3600 | 12.7799       | -               | -                       | -                        | -                  | -                         |

| 0.6578 | 3700 | 12.2294       | -               | -                       | -                        | -                  | -                         |

| 0.6756 | 3800 | 13.6836       | -               | -                       | -                        | -                  | -                         |

| 0.6933 | 3900 | 13.579        | -               | -                       | -                        | -                  | -                         |

| 0.7111 | 4000 | 12.6337       | 13.9878         | 0.6156                  | 0.3435                   | 0.6526             | 0.5372                    |

| 0.7289 | 4100 | 12.682        | -               | -                       | -                        | -                  | -                         |

| 0.7467 | 4200 | 12.2157       | -               | -                       | -                        | -                  | -                         |

| 0.7644 | 4300 | 12.3127       | -               | -                       | -                        | -                  | -                         |

| 0.7822 | 4400 | 11.7435       | -               | -                       | -                        | -                  | -                         |

| 0.8    | 4500 | 12.086        | 12.3685         | 0.6262                  | 0.3386                   | 0.6782             | 0.5477                    |

| 0.8178 | 4600 | 12.5455       | -               | -                       | -                        | -                  | -                         |

| 0.8356 | 4700 | 11.7477       | -               | -                       | -                        | -                  | -                         |

| 0.8533 | 4800 | 11.9948       | -               | -                       | -                        | -                  | -                         |

| 0.8711 | 4900 | 11.8997       | -               | -                       | -                        | -                  | -                         |

| 0.8889 | 5000 | 12.1624       | 12.8277         | 0.6241                  | 0.3515                   | 0.6740             | 0.5499                    |

| 0.9067 | 5100 | 11.4352       | -               | -                       | -                        | -                  | -                         |

| 0.9244 | 5200 | 10.9171       | -               | -                       | -                        | -                  | -                         |

| 0.9422 | 5300 | 11.3242       | -               | -                       | -                        | -                  | -                         |

| 0.96   | 5400 | 11.437        | -               | -                       | -                        | -                  | -                         |

| 0.9778 | 5500 | 11.3141       | 11.6410         | 0.6366                  | 0.3441                   | 0.6605             | 0.5471                    |

| 0.9956 | 5600 | 11.8683       | -               | -                       | -                        | -                  | -                         |

| -1     | -1   | -             | -               | 0.6312                  | 0.3445                   | 0.6640             | 0.5466                    |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.225 kWh

- **Carbon Emitted**: 0.088 kg of CO2

- **Hours Used**: 0.653 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 4.2.0.dev0

- Transformers: 4.52.4

- PyTorch: 2.6.0+cu124

- Accelerate: 1.5.1

- Datasets: 2.21.0

- Tokenizers: 0.21.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### SpladeLoss

```bibtex

@misc{formal2022distillationhardnegativesampling,

      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},

      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},

      year={2022},

      eprint={2205.04733},

      archivePrefix={arXiv},

      primaryClass={cs.IR},

      url={https://arxiv.org/abs/2205.04733},

}

```



#### SparseMarginMSELoss

```bibtex

@misc{hofstätter2021improving,

    title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},

    author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},

    year={2021},

    eprint={2010.02666},

    archivePrefix={arXiv},

    primaryClass={cs.IR}

}

```



#### FlopsLoss

```bibtex

@article{paria2020minimizing,

    title={Minimizing flops to learn efficient sparse representations},

    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},

    journal={arXiv preprint arXiv:2004.05665},

    year={2020}

    }

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->