File size: 46,250 Bytes
f0a1856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:90000
- loss:SpladeLoss
- loss:SparseMarginMSELoss
- loss:FlopsLoss
base_model: Luyu/co-condenser-marco
widget:
- text: up to what age can a child get autism
- text: food temperature danger zone
- text: Small and medium size poly tanks are relatively inexpensive. They are also
    easy to handle, so poly tanks are used in many smaller wineries. New and used
    poly. drums are available in 20, 30, 40 and 55 gallon sizes, and they make excellent
    wine storage containers. for home winemakers. Just like glass, wine storage containers
    made of polyethylene advantages and disadvantages. They are lightweight, and polyethylene
    drums can be handled and stored easily.
- text: what county is louin ms
- text: Map of the Old City of Shanghai. By the early 1400s, Shanghai had become important
    enough for Ming dynasty engineers to begin dredging the Huangpu River (also known
    as Shen). In 1553, a city wall was built around the Old Town (Nanshi) as a defense
    against the depredations of the Wokou (Japanese pirates).
datasets:
- sentence-transformers/msmarco
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 84.77861327949611
  energy_consumed: 0.21810696440845714
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.618
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CoCondenser trained on Natural-Questions tuples
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.46
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.64
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.72
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.82
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.46
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.21333333333333335
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14400000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08199999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.46
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.64
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.72
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.82
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6288613269928542
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5688571428571428
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5779425698484522
      name: Dot Map@100
    - type: query_active_dims
      value: 56.099998474121094
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9981619815715183
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 192.40869140625
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9936960654149056
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.38
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.58
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.62
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.74
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.38
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.36
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.316
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.26999999999999996
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.039663209420347775
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.07520387221675563
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.09363263999248954
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.14669853217549625
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.3303519560816792
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.49576984126984125
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.14778057031019226
      name: Dot Map@100
    - type: query_active_dims
      value: 53.68000030517578
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982412685831473
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 367.5431823730469
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9879580898246167
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.5
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.76
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.8
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.88
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.5
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.25999999999999995
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16799999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09599999999999997
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.48
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.71
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.75
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.85
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.677150216479017
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6328888888888887
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6167275355591967
      name: Dot Map@100
    - type: query_active_dims
      value: 55.939998626708984
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9981672236869567
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 228.83615112304688
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9925025833456834
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.4466666666666667
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.66
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7133333333333333
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8133333333333334
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.4466666666666667
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.27777777777777773
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.20933333333333334
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.14933333333333332
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.3265544031401159
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.47506795740558516
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.5212108799974965
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.605566177391832
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5454544998511834
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5658386243386242
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.44748355857261374
      name: Dot Map@100
    - type: query_active_dims
      value: 55.23999913533529
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9981901579472073
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 246.17159613336406
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9919346177795241
      name: Corpus Sparsity Ratio
---


# CoCondenser trained on Natural-Questions tuples

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [Luyu/co-condenser-marco](https://huggingface.co/Luyu/co-condenser-marco) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space   and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [Luyu/co-condenser-marco](https://huggingface.co/Luyu/co-condenser-marco) <!-- at revision e0cef0ab2410aae0f0994366ddefb5649a266709 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```

SparseEncoder(

  (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 

  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SparseEncoder



# Download from the 🤗 Hub

model = SparseEncoder("tomaarsen/splade-cocondenser-msmarco-margin-mse")

# Run inference

queries = [

    "when did shanghai disneyland open",

]

documents = [

    "Shanghai Disney officially opens: A peek inside. June 17, 2016, 6 p.m. After five years of construction, $5.5 billion in spending and a month of testing to work out the kinks, Shanghai Disney Resort opened to the public just before noon, Shanghai time, on Thursday, June 16 (which was 9 p.m. Wednesday in Anaheim, home of the original Disney park). Shanghai Disneyland features six themed areas, and the resort contains two hotels, a shopping district and 99 acres of gardens, lakes and parkland. We'll keep you updated throughout the week with new details and peeks inside the resort.",

    'Map of the Old City of Shanghai. By the early 1400s, Shanghai had become important enough for Ming dynasty engineers to begin dredging the Huangpu River (also known as Shen). In 1553, a city wall was built around the Old Town (Nanshi) as a defense against the depredations of the Wokou (Japanese pirates).',

    'The conflict is referred to in China as the War of Resistance against Japanese Aggression (1937-45) and the Anti-Fascist War. Japanâ\x80\x99s expansionist policy of the 1930s, driven by the military, was to set up what it called the Greater East Asia Co-Prosperity Sphere. Marco Polo Bridge, Beijing.A sphere.e are marking the anniversary of Germany and Japanâ\x80\x99s surrender in 1945, but it is legitimate to suggest that the incident that sparked the conflict that became WWII occurred not in Poland in 1939 but in China, near this eleven-arched bridge on the outskirts of Beijing, in July 1937. Letâ\x80\x99s look at the undisputed facts.',

]

query_embeddings = model.encode_query(queries)

document_embeddings = model.encode_document(documents)

print(query_embeddings.shape, document_embeddings.shape)

# [1, 30522] [3, 30522]



# Get the similarity scores for the embeddings

similarities = model.similarity(query_embeddings, document_embeddings)

print(similarities)

# tensor([[31.8057, 19.5344, 12.4372]])

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | NanoMSMARCO | NanoNFCorpus | NanoNQ     |
|:----------------------|:------------|:-------------|:-----------|
| dot_accuracy@1        | 0.46        | 0.38         | 0.5        |

| dot_accuracy@3        | 0.64        | 0.58         | 0.76       |
| dot_accuracy@5        | 0.72        | 0.62         | 0.8        |

| dot_accuracy@10       | 0.82        | 0.74         | 0.88       |
| dot_precision@1       | 0.46        | 0.38         | 0.5        |

| dot_precision@3       | 0.2133      | 0.36         | 0.26       |
| dot_precision@5       | 0.144       | 0.316        | 0.168      |

| dot_precision@10      | 0.082       | 0.27         | 0.096      |
| dot_recall@1          | 0.46        | 0.0397       | 0.48       |

| dot_recall@3          | 0.64        | 0.0752       | 0.71       |
| dot_recall@5          | 0.72        | 0.0936       | 0.75       |

| dot_recall@10         | 0.82        | 0.1467       | 0.85       |
| **dot_ndcg@10**       | **0.6289**  | **0.3304**   | **0.6772** |

| dot_mrr@10            | 0.5689      | 0.4958       | 0.6329     |

| dot_map@100           | 0.5779      | 0.1478       | 0.6167     |

| query_active_dims     | 56.1        | 53.68        | 55.94      |

| query_sparsity_ratio  | 0.9982      | 0.9982       | 0.9982     |

| corpus_active_dims    | 192.4087    | 367.5432     | 228.8362   |

| corpus_sparsity_ratio | 0.9937      | 0.988        | 0.9925     |



#### Sparse Nano BEIR



* Dataset: `NanoBEIR_mean`

* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [

          "msmarco",

          "nfcorpus",

          "nq"

      ]

  }

  ```



| Metric                | Value      |

|:----------------------|:-----------|

| dot_accuracy@1        | 0.4467     |

| dot_accuracy@3        | 0.66       |

| dot_accuracy@5        | 0.7133     |

| dot_accuracy@10       | 0.8133     |

| dot_precision@1       | 0.4467     |

| dot_precision@3       | 0.2778     |

| dot_precision@5       | 0.2093     |

| dot_precision@10      | 0.1493     |

| dot_recall@1          | 0.3266     |

| dot_recall@3          | 0.4751     |

| dot_recall@5          | 0.5212     |

| dot_recall@10         | 0.6056     |

| **dot_ndcg@10**       | **0.5455** |
| dot_mrr@10            | 0.5658     |

| dot_map@100           | 0.4475     |
| query_active_dims     | 55.24      |
| query_sparsity_ratio  | 0.9982     |
| corpus_active_dims    | 246.1716   |
| corpus_sparsity_ratio | 0.9919     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 90,000 training samples
* Columns: <code>score</code>, <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | score                                                               | query                                                                            | positive                                                                            | negative                                                                            |
  |:--------|:--------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | float                                                               | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: -2.22</li><li>mean: 13.59</li><li>max: 22.53</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.05 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 81.18 tokens</li><li>max: 203 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 77.08 tokens</li><li>max: 249 tokens</li></ul> |
* Samples:
  | score                          | query                                                      | positive                                                                                                                                                                                                                                                                                                                                                                                                                          | negative                                                                                                                                                                                                                                                                                                                                                                     |
  |:-------------------------------|:-----------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>4.470368494590124</code> | <code>where does the bile duct carry its secretions</code> | <code>The function of the common bile duct is to carry bile from the liver and the gallbladder into the duodenum, the top of the small intestine directly after the stomach. The bile it carries interacts with ingested fats and fat-soluble vitamins to enable them to be absorbed by the intestine.</code>                                                                                                                     | <code>The gall bladder is a pouch-shaped organ that stores the bile produced by the liver. The gall bladder shares a vessel, called the common bile duct, with the liver. When bile is needed, it moves through the common bile duct into the first part of the small intestine, the duodenum. It is here that the bile breaks down fat.</code>                              |
  | <code>9.550037781397503</code> | <code>definition of reverse auction</code>                 | <code>Reverse auction. A reverse auction is a type of auction in which the roles of buyer and seller are reversed. In an ordinary auction (also known as a 'forward auction'), buyers compete to obtain goods or services by offering increasingly higher prices. In a reverse auction, the sellers compete to obtain business from the buyer and prices will typically decrease as the sellers underbid each other.</code>       | <code>No-reserve auction. A No-reserve auction (NR), also known as an absolute auction, is an auction in which the item for sale will be sold regardless of price. From the seller's perspective, advertising an auction as having no reserve price can be desirable because it potentially attracts a greater number of bidders due to the possibility of a bargain.</code> |
  | <code>19.58259622255961</code> | <code>how do i prevent diverticulitis</code>               | <code>Follow Following Unfollow Pending Disabled. A , Gastroenterology, answered. The suggestion to prevent diverticulitis is to eat a diet high in fiber, and that includes high-fiber whole grains, fruits, vegetables, nuts, and seeds. I’m aware that some gastroenterologists say to avoid all seeds and nuts, so some of you are nuts enough to wash tomato seeds from slices and pick free poppy seeds from buns.</code> | <code>The test is fast and easy especially with the newer CT scanners. But does it provide the information needed? CT KUBs are used to screen for a variety of intra-abdominal conditions, including appendicitis, kidney stones, diverticulitis, and others.</code>                                                                                                         |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json

  {

      "loss": "SparseMarginMSELoss",

      "lambda_corpus": 0.08,

      "lambda_query": 0.1

  }

  ```

### Evaluation Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 10,000 evaluation samples
* Columns: <code>score</code>, <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | score                                                              | query                                                                            | positive                                                                            | negative                                                                            |
  |:--------|:-------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | float                                                              | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: -1.34</li><li>mean: 13.49</li><li>max: 22.2</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.85 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 80.48 tokens</li><li>max: 211 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 77.44 tokens</li><li>max: 209 tokens</li></ul> |
* Samples:
  | score                          | query                                    | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | negative                                                                                                                                                                                                                                                                                                                                             |
  |:-------------------------------|:-----------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>15.64028427998225</code> | <code>what is a protected seedbed</code> | <code>A seedbed is a plot of garden set aside to grow vegetables seeds, which can later be transplanted. seedbed is a plot of garden set aside to grow vegetables seeds, which can later be transplanted.</code>                                                                                                                                                                                                                                                                              | <code>Several articles within the Confederate States’ Constitution specifically protected slavery within the Confederacy, but some articles of the U.S. Constitution also protected slavery—the Emancipation Proclamation drew a clearer distinction between the two.</code>                                                                     |
  | <code>6.375148057937622</code> | <code>who founded ecuador</code>         | <code>The first Spanish settlement in Ecuador was established in 1534 at Quito on the site of an important Incan town of the same name. Another settlement was established four years later near the river Guayas in Guayaquil.</code>                                                                                                                                                                                                                                                        | <code>Zuleta is a colonial working farm of 4,000 acres (2,000 hectares) that belongs to the family of Mr. Galo Plaza lasso, a former president of Ecuador, for more than 100 years. It was chosen as one of the world’s “Top Ten Finds” by Outside magazine and named as one of the best Ecuador Hotel by National Geographic Traveler.</code> |
  | <code>8.436618288358051</code> | <code>what is aol problem</code>         | <code>AOL problems. Lots of people are reporting ongoing (RTR:GE) messages from AOL today. This indicates the AOL mail servers are having problems and can’t accept mail. This has nothing to do with spam, filtering or malicious email. This is simply their servers aren’t functioning as well as they should be and so AOL can’t accept all the mail thrown at them. These types of blocks resolve themselves. Update Feb 8, 2016: AOL users are having problems logging in.</code> | <code>Executive Director. I have read these complaints of poor service and agree 110%. I'm a college professor and give extra credit to all AOL users and over the 100% highest grade. I thought I phoned AOL and get some chap in India who is a proven scam man and I'm the poor American SOB who gets whacked.</code>                             |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json

  {

      "loss": "SparseMarginMSELoss",

      "lambda_corpus": 0.08,

      "lambda_query": 0.1

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |

|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|

| 0.0178 | 100  | 805201.68     | -               | -                       | -                        | -                  | -                         |

| 0.0356 | 200  | 11999.3975    | -               | -                       | -                        | -                  | -                         |

| 0.0533 | 300  | 124.0031      | -               | -                       | -                        | -                  | -                         |

| 0.0711 | 400  | 62.6813       | -               | -                       | -                        | -                  | -                         |

| 0.0889 | 500  | 46.0329       | 49.7658         | 0.4890                  | 0.2543                   | 0.5131             | 0.4188                    |

| 0.1067 | 600  | 41.2877       | -               | -                       | -                        | -                  | -                         |

| 0.1244 | 700  | 35.3636       | -               | -                       | -                        | -                  | -                         |

| 0.1422 | 800  | 33.3727       | -               | -                       | -                        | -                  | -                         |

| 0.16   | 900  | 29.389        | -               | -                       | -                        | -                  | -                         |

| 0.1778 | 1000 | 31.2482       | 28.1527         | 0.5652                  | 0.2875                   | 0.5423             | 0.4650                    |

| 0.1956 | 1100 | 31.43         | -               | -                       | -                        | -                  | -                         |

| 0.2133 | 1200 | 27.9919       | -               | -                       | -                        | -                  | -                         |

| 0.2311 | 1300 | 26.9214       | -               | -                       | -                        | -                  | -                         |

| 0.2489 | 1400 | 27.5533       | -               | -                       | -                        | -                  | -                         |

| 0.2667 | 1500 | 25.7473       | 26.8466         | 0.5837                  | 0.3265                   | 0.6268             | 0.5123                    |

| 0.2844 | 1600 | 26.7899       | -               | -                       | -                        | -                  | -                         |

| 0.3022 | 1700 | 24.0652       | -               | -                       | -                        | -                  | -                         |

| 0.32   | 1800 | 23.5837       | -               | -                       | -                        | -                  | -                         |

| 0.3378 | 1900 | 24.1051       | -               | -                       | -                        | -                  | -                         |

| 0.3556 | 2000 | 24.6901       | 22.0851         | 0.6018                  | 0.3325                   | 0.6359             | 0.5234                    |

| 0.3733 | 2100 | 21.5136       | -               | -                       | -                        | -                  | -                         |

| 0.3911 | 2200 | 22.066        | -               | -                       | -                        | -                  | -                         |

| 0.4089 | 2300 | 20.8234       | -               | -                       | -                        | -                  | -                         |

| 0.4267 | 2400 | 20.1988       | -               | -                       | -                        | -                  | -                         |

| 0.4444 | 2500 | 20.0342       | 20.3437         | 0.5901                  | 0.3222                   | 0.6010             | 0.5044                    |

| 0.4622 | 2600 | 18.8835       | -               | -                       | -                        | -                  | -                         |

| 0.48   | 2700 | 19.4797       | -               | -                       | -                        | -                  | -                         |

| 0.4978 | 2800 | 19.6199       | -               | -                       | -                        | -                  | -                         |

| 0.5156 | 2900 | 16.6963       | -               | -                       | -                        | -                  | -                         |

| 0.5333 | 3000 | 19.9204       | 18.0851         | 0.5915                  | 0.3111                   | 0.6323             | 0.5116                    |

| 0.5511 | 3100 | 18.7849       | -               | -                       | -                        | -                  | -                         |

| 0.5689 | 3200 | 18.3169       | -               | -                       | -                        | -                  | -                         |

| 0.5867 | 3300 | 17.1938       | -               | -                       | -                        | -                  | -                         |

| 0.6044 | 3400 | 18.0807       | -               | -                       | -                        | -                  | -                         |

| 0.6222 | 3500 | 16.7721       | 20.1195         | 0.6012                  | 0.3119                   | 0.6337             | 0.5156                    |

| 0.64   | 3600 | 16.7909       | -               | -                       | -                        | -                  | -                         |

| 0.6578 | 3700 | 16.4954       | -               | -                       | -                        | -                  | -                         |

| 0.6756 | 3800 | 16.3734       | -               | -                       | -                        | -                  | -                         |

| 0.6933 | 3900 | 17.2231       | -               | -                       | -                        | -                  | -                         |

| 0.7111 | 4000 | 16.8486       | 17.5785         | 0.6228                  | 0.3423                   | 0.6553             | 0.5401                    |

| 0.7289 | 4100 | 18.2939       | -               | -                       | -                        | -                  | -                         |

| 0.7467 | 4200 | 16.1108       | -               | -                       | -                        | -                  | -                         |

| 0.7644 | 4300 | 16.878        | -               | -                       | -                        | -                  | -                         |

| 0.7822 | 4400 | 15.6163       | -               | -                       | -                        | -                  | -                         |

| 0.8    | 4500 | 15.8337       | 16.1847         | 0.6286                  | 0.3376                   | 0.6639             | 0.5434                    |

| 0.8178 | 4600 | 15.5014       | -               | -                       | -                        | -                  | -                         |

| 0.8356 | 4700 | 15.7579       | -               | -                       | -                        | -                  | -                         |

| 0.8533 | 4800 | 15.9361       | -               | -                       | -                        | -                  | -                         |

| 0.8711 | 4900 | 16.3308       | -               | -                       | -                        | -                  | -                         |

| 0.8889 | 5000 | 14.8395       | 17.4054         | 0.6221                  | 0.3280                   | 0.6853             | 0.5451                    |

| 0.9067 | 5100 | 14.8655       | -               | -                       | -                        | -                  | -                         |

| 0.9244 | 5200 | 14.6498       | -               | -                       | -                        | -                  | -                         |

| 0.9422 | 5300 | 15.5189       | -               | -                       | -                        | -                  | -                         |

| 0.96   | 5400 | 14.608        | -               | -                       | -                        | -                  | -                         |

| 0.9778 | 5500 | 15.6019       | 16.4883         | 0.6298                  | 0.3317                   | 0.6831             | 0.5482                    |

| 0.9956 | 5600 | 14.6263       | -               | -                       | -                        | -                  | -                         |

| -1     | -1   | -             | -               | 0.6289                  | 0.3304                   | 0.6772             | 0.5455                    |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.218 kWh

- **Carbon Emitted**: 0.085 kg of CO2

- **Hours Used**: 0.618 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 4.2.0.dev0

- Transformers: 4.52.4

- PyTorch: 2.6.0+cu124

- Accelerate: 1.5.1

- Datasets: 2.21.0

- Tokenizers: 0.21.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### SpladeLoss

```bibtex

@misc{formal2022distillationhardnegativesampling,

      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},

      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},

      year={2022},

      eprint={2205.04733},

      archivePrefix={arXiv},

      primaryClass={cs.IR},

      url={https://arxiv.org/abs/2205.04733},

}

```



#### SparseMarginMSELoss

```bibtex

@misc{hofstätter2021improving,

    title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},

    author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},

    year={2021},

    eprint={2010.02666},

    archivePrefix={arXiv},

    primaryClass={cs.IR}

}

```



#### FlopsLoss

```bibtex

@article{paria2020minimizing,

    title={Minimizing flops to learn efficient sparse representations},

    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},

    journal={arXiv preprint arXiv:2004.05665},

    year={2020}

    }

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->