File size: 76,554 Bytes
ba9d67b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: 'The term emergent literacy signals a belief that, in a literate society,

    young children even one and two year olds, are in the process of becoming literate”.

    ... Gray (1956:21) notes: Functional literacy is used for the training of adults

    to ''meet independently the reading and writing demands placed on them''.'
- text: Rey is seemingly confirmed as being The Chosen One per a quote by a Lucasfilm
    production designer who worked on The Rise of Skywalker.
- text: are union gun safes fireproof?
- text: Fruit is an essential part of a healthy diet  and may aid weight loss. Most
    fruits are low in calories while high in nutrients and fiber, which can boost
    your fullness. Keep in mind that it's best to eat fruits whole rather than juiced.
    What's more, simply eating fruit is not the key to weight loss.
- text: Treatment of suspected bacterial infection is with antibiotics, such as amoxicillin/clavulanate
    or doxycycline, given for 5 to 7 days for acute sinusitis and for up to 6 weeks
    for chronic sinusitis.
datasets:
- sentence-transformers/gooaq
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 16.638146863146233
  energy_consumed: 0.04280437678001716
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.193
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: splade-distilbert-base-uncased trained on GooAQ
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.3
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.54
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.68
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.74
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.3
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.18
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.136
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07400000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.3
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.54
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.68
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.74
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5061981336542133
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.43174603174603166
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.44263003895418085
      name: Dot Map@100
    - type: query_active_dims
      value: 118.5999984741211
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.996114278275535
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 397.6775817871094
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9869707888805744
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.32
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.64
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.72
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.32
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.16666666666666663
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.128
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07200000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.32
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.5
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.64
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.72
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5061402921245981
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.43823809523809515
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4500866595693115
      name: Dot Map@100
    - type: query_active_dims
      value: 105.08000183105469
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.996557237342538
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 381.3874816894531
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9875045055471643
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.34
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.44
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.48
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.6
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.34
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.26
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.23199999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.19599999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.01204138289831077
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.028423242145972874
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.04013720529494631
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.06944452178864681
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.2238211925399539
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4057777777777777
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.07440414426513103
      name: Dot Map@100
    - type: query_active_dims
      value: 183.05999755859375
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9940023590341854
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 823.3663940429688
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9730238387378621
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.3
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.46
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.48
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.6
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.3
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2733333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.23199999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.21400000000000002
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.010708049564977435
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.04042324214597287
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.05817733939406678
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.0849823575856454
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.24157503472859507
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3932222222222223
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.08415340735361837
      name: Dot Map@100
    - type: query_active_dims
      value: 150.77999877929688
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9950599567925006
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 807.0741577148438
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9735576253943109
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.28
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.58
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.68
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.28
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.16666666666666663
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.11600000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.27
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.48
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.54
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.64
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.45385561138570657
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.40454761904761893
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.40238133013339067
      name: Dot Map@100
    - type: query_active_dims
      value: 108.23999786376953
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9964537055938743
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 581.3165893554688
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9809541776634733
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.24
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.46
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.54
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.72
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.24
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.15333333333333332
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.10800000000000001
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07400000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.23
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.44
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.51
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.67
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4431148339670733
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3818015873015873
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3762054598208147
      name: Dot Map@100
    - type: query_active_dims
      value: 97.18000030517578
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.996816067089143
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 564.0422973632812
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9815201396578442
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.3066666666666667
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.49333333333333335
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.5800000000000001
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.6733333333333333
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.3066666666666667
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.20222222222222222
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16133333333333333
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.11333333333333334
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.1940137942994369
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.34947441404865764
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.4200457350983155
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.4831481739295489
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.39462497919329126
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4140238095238094
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3064718377842342
      name: Dot Map@100
    - type: query_active_dims
      value: 136.63333129882812
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9955234476345315
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 565.0999949325504
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9814854860450642
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.35158555729984303
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5366091051805337
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.609105180533752
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7153218210361068
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.35158555729984303
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.24084772370486657
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.195861852433281
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.14448037676609105
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.18710365017134828
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.3166600122342838
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.38032257819651705
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.4791896835492342
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.41388777461576925
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4636842715108021
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.33650048535941457
      name: Dot Map@100
    - type: query_active_dims
      value: 195.48228298827937
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9935953645570972
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 525.5023385946348
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9827828340674059
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.2
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.38
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.42
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.52
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.2
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.14
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.09200000000000001
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.06000000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.08833333333333332
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.18166666666666664
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.19233333333333336
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.2523333333333333
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.2097369113981719
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.2989603174603175
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.16798141398273245
      name: Dot Map@100
    - type: query_active_dims
      value: 250.86000061035156
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9917810103987172
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 643.326904296875
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9789225180428257
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: dot_accuracy@1
      value: 0.62
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.78
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.86
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.92
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.62
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.4733333333333334
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.452
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.39599999999999996
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.06769969786296744
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.14199136819511296
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.192778624550143
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.2816492423802407
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4998791588316728
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7168571428571429
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3705445544087827
      name: Dot Map@100
    - type: query_active_dims
      value: 146.02000427246094
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9952159096955487
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 481.7581481933594
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9842160360332429
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.44
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.66
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.78
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.84
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.22
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.156
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08599999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.44
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.64
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.7366666666666666
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.7966666666666665
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6190748153469672
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5678888888888888
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5644736817593311
      name: Dot Map@100
    - type: query_active_dims
      value: 253.3800048828125
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9916984468618435
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 749.9185180664062
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9754302300613852
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: dot_accuracy@1
      value: 0.22
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.42
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.46
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.54
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.22
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.16666666666666663
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14400000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.13933333333333334
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.26035714285714284
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.31182539682539684
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.3924047619047619
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.3071601294876744
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3309126984126985
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.2510011498241125
      name: Dot Map@100
    - type: query_active_dims
      value: 85.69999694824219
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9971921893405333
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 416.93829345703125
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9863397453162627
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: dot_accuracy@1
      value: 0.68
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.78
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.8
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.88
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.68
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.35333333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.24
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.13799999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.34
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.53
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.6
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.69
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6197567693807055
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7347142857142859
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.540453368331375
      name: Dot Map@100
    - type: query_active_dims
      value: 152.5399932861328
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9950022936476596
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 553.4066772460938
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9818685971677447
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: dot_accuracy@1
      value: 0.36
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.52
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.58
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.78
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.36
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.1733333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.124
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08199999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.34666666666666673
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.4706666666666666
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.5506666666666666
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.7506666666666666
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5326024015174656
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4782936507936508
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4734890338060357
      name: Dot Map@100
    - type: query_active_dims
      value: 52.900001525878906
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982668238802871
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 61.35552978515625
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9979897932709142
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: dot_accuracy@1
      value: 0.28
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.52
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.62
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.78
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.28
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.20666666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.184
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.13799999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.059666666666666666
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.12866666666666668
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.18966666666666662
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.2836666666666667
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.2574919427490159
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.42540476190476184
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.17688082476501285
      name: Dot Map@100
    - type: query_active_dims
      value: 197.1999969482422
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9935390866604993
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 676.0037231445312
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9778519191683201
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: dot_accuracy@1
      value: 0.02
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.14
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.22
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.38
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.02
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.04666666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.044000000000000004
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.038000000000000006
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.02
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.14
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.22
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.38
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.17464966621739791
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.11243650793650796
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.11564322909400383
      name: Dot Map@100
    - type: query_active_dims
      value: 732.4600219726562
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9760022271812904
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 648.47509765625
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9787538464826602
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: dot_accuracy@1
      value: 0.36
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.56
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.66
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.36
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.20666666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.132
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.078
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.335
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.535
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.575
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.66
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5064687965907525
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4627222222222222
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.46039157929311386
      name: Dot Map@100
    - type: query_active_dims
      value: 276.20001220703125
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9909507891944489
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 729.4652099609375
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9761003469641264
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: dot_accuracy@1
      value: 0.5306122448979592
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.7959183673469388
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9183673469387755
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9591836734693877
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.5306122448979592
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.5510204081632653
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.5102040816326532
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.4122448979591837
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.03493970479958239
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.10780840584746129
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.16707882245178216
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.26709619093606257
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4628903176649091
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6864431486880467
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.34320194766414486
      name: Dot Map@100
    - type: query_active_dims
      value: 37.81632614135742
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9987610141490939
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 493.48040771484375
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9838319766819067
      name: Corpus Sparsity Ratio
---


# splade-distilbert-base-uncased trained on GooAQ

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space   and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```

SparseEncoder(

  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'DistilBertForMaskedLM'})

  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SparseEncoder



# Download from the 🤗 Hub

model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-gooaq-peft-r128")

# Run inference

queries = [

    "how many days for doxycycline to work on sinus infection?",

]

documents = [

    'Treatment of suspected bacterial infection is with antibiotics, such as amoxicillin/clavulanate or doxycycline, given for 5 to 7 days for acute sinusitis and for up to 6 weeks for chronic sinusitis.',

    'Most engagements typically have a cocktail dress code, calling for dresses at, or slightly above, knee-length and high heels. If your party states a different dress code, however, such as semi-formal or dressy-casual, you may need to dress up or down accordingly.',

    'The average service life of a gas furnace is about 15 years, but the actual life span of an individual unit can vary greatly. There are a number of contributing factors that determine the age a furnace reaches: The quality of the equipment.',

]

query_embeddings = model.encode_query(queries)

document_embeddings = model.encode_document(documents)

print(query_embeddings.shape, document_embeddings.shape)

# [1, 30522] [3, 30522]



# Get the similarity scores for the embeddings

similarities = model.similarity(query_embeddings, document_embeddings)

print(similarities)

# tensor([[85.3246, 22.8328, 29.6908]])

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:----------------------|:------------|:-------------|:-----------|:-----------------|:------------|:-----------|:-------------|:-------------|:-------------------|:------------|:------------|:------------|:---------------|
| dot_accuracy@1        | 0.32        | 0.3          | 0.24       | 0.2              | 0.62        | 0.44       | 0.22         | 0.68         | 0.36               | 0.28        | 0.02        | 0.36        | 0.5306         |

| dot_accuracy@3        | 0.5         | 0.46         | 0.46       | 0.38             | 0.78        | 0.66       | 0.42         | 0.78         | 0.52               | 0.52        | 0.14        | 0.56        | 0.7959         |
| dot_accuracy@5        | 0.64        | 0.48         | 0.54       | 0.42             | 0.86        | 0.78       | 0.46         | 0.8          | 0.58               | 0.62        | 0.22        | 0.6         | 0.9184         |

| dot_accuracy@10       | 0.72        | 0.6          | 0.72       | 0.52             | 0.92        | 0.84       | 0.54         | 0.88         | 0.78               | 0.78        | 0.38        | 0.66        | 0.9592         |
| dot_precision@1       | 0.32        | 0.3          | 0.24       | 0.2              | 0.62        | 0.44       | 0.22         | 0.68         | 0.36               | 0.28        | 0.02        | 0.36        | 0.5306         |

| dot_precision@3       | 0.1667      | 0.2733       | 0.1533     | 0.14             | 0.4733      | 0.22       | 0.1667       | 0.3533       | 0.1733             | 0.2067      | 0.0467      | 0.2067      | 0.551          |
| dot_precision@5       | 0.128       | 0.232        | 0.108      | 0.092            | 0.452       | 0.156      | 0.144        | 0.24         | 0.124              | 0.184       | 0.044       | 0.132       | 0.5102         |

| dot_precision@10      | 0.072       | 0.214        | 0.074      | 0.06             | 0.396       | 0.086      | 0.09         | 0.138        | 0.082              | 0.138       | 0.038       | 0.078       | 0.4122         |
| dot_recall@1          | 0.32        | 0.0107       | 0.23       | 0.0883           | 0.0677      | 0.44       | 0.1393       | 0.34         | 0.3467             | 0.0597      | 0.02        | 0.335       | 0.0349         |

| dot_recall@3          | 0.5         | 0.0404       | 0.44       | 0.1817           | 0.142       | 0.64       | 0.2604       | 0.53         | 0.4707             | 0.1287      | 0.14        | 0.535       | 0.1078         |
| dot_recall@5          | 0.64        | 0.0582       | 0.51       | 0.1923           | 0.1928      | 0.7367     | 0.3118       | 0.6          | 0.5507             | 0.1897      | 0.22        | 0.575       | 0.1671         |

| dot_recall@10         | 0.72        | 0.085        | 0.67       | 0.2523           | 0.2816      | 0.7967     | 0.3924       | 0.69         | 0.7507             | 0.2837      | 0.38        | 0.66        | 0.2671         |
| **dot_ndcg@10**       | **0.5061**  | **0.2416**   | **0.4431** | **0.2097**       | **0.4999**  | **0.6191** | **0.3072**   | **0.6198**   | **0.5326**         | **0.2575**  | **0.1746**  | **0.5065**  | **0.4629**     |

| dot_mrr@10            | 0.4382      | 0.3932       | 0.3818     | 0.299            | 0.7169      | 0.5679     | 0.3309       | 0.7347       | 0.4783             | 0.4254      | 0.1124      | 0.4627      | 0.6864         |

| dot_map@100           | 0.4501      | 0.0842       | 0.3762     | 0.168            | 0.3705      | 0.5645     | 0.251        | 0.5405       | 0.4735             | 0.1769      | 0.1156      | 0.4604      | 0.3432         |

| query_active_dims     | 105.08      | 150.78       | 97.18      | 250.86           | 146.02      | 253.38     | 85.7         | 152.54       | 52.9               | 197.2       | 732.46      | 276.2       | 37.8163        |

| query_sparsity_ratio  | 0.9966      | 0.9951       | 0.9968     | 0.9918           | 0.9952      | 0.9917     | 0.9972       | 0.995        | 0.9983             | 0.9935      | 0.976       | 0.991       | 0.9988         |

| corpus_active_dims    | 381.3875    | 807.0742     | 564.0423   | 643.3269         | 481.7581    | 749.9185   | 416.9383     | 553.4067     | 61.3555            | 676.0037    | 648.4751    | 729.4652    | 493.4804       |

| corpus_sparsity_ratio | 0.9875      | 0.9736       | 0.9815     | 0.9789           | 0.9842      | 0.9754     | 0.9863       | 0.9819       | 0.998              | 0.9779      | 0.9788      | 0.9761      | 0.9838         |



#### Sparse Nano BEIR



* Dataset: `NanoBEIR_mean`

* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [

          "msmarco",

          "nfcorpus",

          "nq"

      ]

  }

  ```



| Metric                | Value      |

|:----------------------|:-----------|

| dot_accuracy@1        | 0.3067     |

| dot_accuracy@3        | 0.4933     |

| dot_accuracy@5        | 0.58       |

| dot_accuracy@10       | 0.6733     |

| dot_precision@1       | 0.3067     |

| dot_precision@3       | 0.2022     |

| dot_precision@5       | 0.1613     |

| dot_precision@10      | 0.1133     |

| dot_recall@1          | 0.194      |

| dot_recall@3          | 0.3495     |

| dot_recall@5          | 0.42       |

| dot_recall@10         | 0.4831     |

| **dot_ndcg@10**       | **0.3946** |
| dot_mrr@10            | 0.414      |

| dot_map@100           | 0.3065     |
| query_active_dims     | 136.6333   |
| query_sparsity_ratio  | 0.9955     |
| corpus_active_dims    | 565.1      |
| corpus_sparsity_ratio | 0.9815     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json

  {

      "dataset_names": [

          "climatefever",

          "dbpedia",

          "fever",

          "fiqa2018",

          "hotpotqa",

          "msmarco",

          "nfcorpus",

          "nq",

          "quoraretrieval",

          "scidocs",

          "arguana",

          "scifact",

          "touche2020"

      ]

  }

  ```

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.3516     |

| dot_accuracy@3        | 0.5366     |
| dot_accuracy@5        | 0.6091     |

| dot_accuracy@10       | 0.7153     |
| dot_precision@1       | 0.3516     |

| dot_precision@3       | 0.2408     |
| dot_precision@5       | 0.1959     |

| dot_precision@10      | 0.1445     |
| dot_recall@1          | 0.1871     |

| dot_recall@3          | 0.3167     |
| dot_recall@5          | 0.3803     |

| dot_recall@10         | 0.4792     |
| **dot_ndcg@10**       | **0.4139** |

| dot_mrr@10            | 0.4637     |

| dot_map@100           | 0.3365     |

| query_active_dims     | 195.4823   |

| query_sparsity_ratio  | 0.9936     |

| corpus_active_dims    | 525.5023   |

| corpus_sparsity_ratio | 0.9828     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### gooaq



* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 99,000 training samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.79 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.02 tokens</li><li>max: 153 tokens</li></ul> |

* Samples:

  | question                                                                           | answer                                                                                                                                                                                                                                                                                                         |

  |:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>what are the 5 characteristics of a star?</code>                             | <code>Key Concept: Characteristics used to classify stars include color, temperature, size, composition, and brightness.</code>                                                                                                                                                                                |

  | <code>are copic markers alcohol ink?</code>                                        | <code>Copic Ink is alcohol-based and flammable. Keep away from direct sunlight and extreme temperatures.</code>                                                                                                                                                                                                |

  | <code>what is the difference between appellate term and appellate division?</code> | <code>Appellate terms An appellate term is an intermediate appellate court that hears appeals from the inferior courts within their designated counties or judicial districts, and are intended to ease the workload on the Appellate Division and provide a less expensive forum closer to the people.</code> |

* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:

  ```json

  {

      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",

      "document_regularizer_weight": 3e-05,

      "query_regularizer_weight": 5e-05

  }

  ```



### Evaluation Dataset



#### gooaq



* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 1,000 evaluation samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.93 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.84 tokens</li><li>max: 127 tokens</li></ul> |

* Samples:

  | question                                                         | answer                                                                                                                                                                                                                                                                                                                                                        |

  |:-----------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>should you take ibuprofen with high blood pressure?</code> | <code>In general, people with high blood pressure should use acetaminophen or possibly aspirin for over-the-counter pain relief. Unless your health care provider has said it's OK, you should not use ibuprofen, ketoprofen, or naproxen sodium. If aspirin or acetaminophen doesn't help with your pain, call your doctor.</code>                           |

  | <code>how old do you have to be to work in sc?</code>            | <code>The general minimum age of employment for South Carolina youth is 14, although the state allows younger children who are performers to work in show business. If their families are agricultural workers, children younger than age 14 may also participate in farm labor.</code>                                                                       |

  | <code>how to write a topic proposal for a research paper?</code> | <code>['Write down the main topic of your paper. ... ', 'Write two or three short sentences under the main topic that explain why you chose that topic. ... ', 'Write a thesis sentence that states the angle and purpose of your research paper. ... ', 'List the items you will cover in the body of the paper that support your thesis statement.']</code> |

* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:

  ```json

  {

      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",

      "document_regularizer_weight": 3e-05,

      "query_regularizer_weight": 5e-05

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 32

- `per_device_eval_batch_size`: 32

- `learning_rate`: 2e-05

- `num_train_epochs`: 1

- `bf16`: True

- `load_best_model_at_end`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 32

- `per_device_eval_batch_size`: 32

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `torch_empty_cache_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.0

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: True

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: True

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `include_for_metrics`: []

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `use_liger_kernel`: False

- `eval_use_gather_object`: False

- `average_tokens_across_devices`: False

- `prompts`: None

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

- `router_mapping`: {}

- `learning_rate_mapping`: {}



</details>



### Training Logs

| Epoch      | Step     | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |

|:----------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|

| 0.0323     | 100      | 81.7292       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.0646     | 200      | 4.3059        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.0970     | 300      | 0.8078        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.1293     | 400      | 0.4309        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.1616     | 500      | 0.3837        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.1939     | 600      | 0.282         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.1972     | 610      | -             | 0.1867          | 0.4508                  | 0.2059                   | 0.3905             | 0.3491                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.2262     | 700      | 0.2593        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.2586     | 800      | 0.2161        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.2909     | 900      | 0.2           | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.3232     | 1000     | 0.2259        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.3555     | 1100     | 0.2161        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.3878     | 1200     | 0.1835        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.3943     | 1220     | -             | 0.1368          | 0.4567                  | 0.2373                   | 0.4209             | 0.3717                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.4202     | 1300     | 0.1936        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.4525     | 1400     | 0.1689        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.4848     | 1500     | 0.1858        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.5171     | 1600     | 0.1639        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.5495     | 1700     | 0.1376        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.5818     | 1800     | 0.1677        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| **0.5915** | **1830** | **-**         | **0.1138**      | **0.5061**              | **0.2416**               | **0.4431**         | **0.3969**                | **-**                        | **-**                   | **-**                 | **-**                    | **-**                    | **-**                          | **-**                   | **-**                   | **-**                   | **-**                      |

| 0.6141     | 1900     | 0.1483        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.6464     | 2000     | 0.1513        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.6787     | 2100     | 0.1449        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.7111     | 2200     | 0.193         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.7434     | 2300     | 0.1554        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.7757     | 2400     | 0.1372        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.7886     | 2440     | -             | 0.1148          | 0.5084                  | 0.2240                   | 0.4428             | 0.3917                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.8080     | 2500     | 0.1308        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.8403     | 2600     | 0.1284        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.8727     | 2700     | 0.1309        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.9050     | 2800     | 0.1458        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.9373     | 2900     | 0.1351        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.9696     | 3000     | 0.1135        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.9858     | 3050     | -             | 0.1068          | 0.5062                  | 0.2238                   | 0.4539             | 0.3946                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| -1         | -1       | -             | -               | 0.5061                  | 0.2416                   | 0.4431             | 0.4139                    | 0.2097                       | 0.4999                  | 0.6191                | 0.3072                   | 0.6198                   | 0.5326                         | 0.2575                  | 0.1746                  | 0.5065                  | 0.4629                     |



* The bold row denotes the saved checkpoint.



### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.043 kWh

- **Carbon Emitted**: 0.017 kg of CO2

- **Hours Used**: 0.193 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 4.2.0.dev0

- Transformers: 4.52.4

- PyTorch: 2.7.1+cu126

- Accelerate: 1.5.1

- Datasets: 2.21.0

- Tokenizers: 0.21.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### SpladeLoss

```bibtex

@misc{formal2022distillationhardnegativesampling,

      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},

      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},

      year={2022},

      eprint={2205.04733},

      archivePrefix={arXiv},

      primaryClass={cs.IR},

      url={https://arxiv.org/abs/2205.04733},

}

```



#### SparseMultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



#### FlopsLoss

```bibtex

@article{paria2020minimizing,

    title={Minimizing flops to learn efficient sparse representations},

    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},

    journal={arXiv preprint arXiv:2004.05665},

    year={2020}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->