File size: 93,317 Bytes
70c77d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- source_sentence: who are the dancers in the limp bizkit rollin video
  sentences:
  - Voting age Before the Second World War, the voting age in almost all countries
    was 21 years or higher. Czechoslovakia was the first to reduce the voting age
    to 20 years in 1946, and by 1968 a total of 17 countries had lowered their voting
    age.[1] Many countries, particularly in Western Europe, reduced their voting ages
    to 18 years during the 1970s, starting with the United Kingdom (1969),[2] with
    the United States (26th Amendment) (1971), Canada, West Germany (1972), Australia
    (1974), France (1974), and others following soon afterwards. By the end of the
    20th century, 18 had become by far the most common voting age. However, a few
    countries maintain a voting age of 20 years or higher. It was argued that young
    men could be drafted to go to war at 18, and many people felt they should be able
    to vote at the age of 18.[3]
  - Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower of
    the former World Trade Center in New York City. The introduction features Ben
    Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the
    keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles.
    The rest of the video has several cuts to Durst and his bandmates hanging out
    of the Bentley as they drive about Manhattan. The song Ben Stiller is playing
    at the beginning is "My Generation" from the same album. The video also features
    scenes of Fred Durst with five girls dancing in a room. The video was filmed around
    the same time as the film Zoolander, which explains Stiller and Dorff's appearance.
    Fred Durst has a small cameo in that film.
  - Eobard Thawne When Thawne reappears, he murders the revived Johnny Quick,[9] before
    proceeding to trap Barry and the revived Max Mercury inside the negative Speed
    Force. Thawne then attempts to kill Wally West's children through their connection
    to the Speed Force in front of Linda Park-West, only to be stopped by Jay Garrick
    and Bart Allen. Thawne defeats Jay and prepares to kill Bart, but Barry, Max,
    Wally, Jesse Quick, and Impulse arrive to prevent the villain from doing so.[8][10]
    In the ensuing fight, Thawne reveals that he is responsible for every tragedy
    that has occurred in Barry's life, including the death of his mother. Thawne then
    decides to destroy everything the Flash holds dear by killing Barry's wife, Iris,
    before they even met.[10]
- source_sentence: who wins season 14 of hell's kitchen
  sentences:
  - Hell's Kitchen (U.S. season 14) Season 14 of the American competitive reality
    television series Hell's Kitchen premiered on March 3, 2015 on Fox. The prize
    is a head chef position at Gordon Ramsay Pub & Grill in Caesars Atlantic City.[1]
    Gordon Ramsay returned as head chef with Andi Van Willigan and James Avery returning
    as sous-chefs for both their respective kitchens as well as Marino Monferrato
    as the maître d'. Executive chef Meghan Gill from Roanoke, Virginia, won the
    competition, thus becoming the fourteenth winner of Hell's Kitchen.
  - 'Maze Runner: The Death Cure On April 22, 2017, the studio delayed the release

    date once again, to February 9, 2018, in order to allow more time for post-production;

    months later, on August 25, the studio moved the release forward two weeks.[17]

    The film will premiere on January 26, 2018 in 3D, IMAX and IMAX 3D.[18][19]'
  - North American Plate On its western edge, the Farallon Plate has been subducting
    under the North American Plate since the Jurassic Period. The Farallon Plate has
    almost completely subducted beneath the western portion of the North American
    Plate leaving that part of the North American Plate in contact with the Pacific
    Plate as the San Andreas Fault. The Juan de Fuca, Explorer, Gorda, Rivera, Cocos
    and Nazca plates are remnants of the Farallon Plate.
- source_sentence: who played the dj in the movie the warriors
  sentences:
  - List of Arrow episodes As of May 17, 2018,[update] 138 episodes of Arrow have
    aired, concluding the sixth season. On April 2, 2018, the CW renewed the series
    for a seventh season.[1]
  - Lynne Thigpen Cherlynne Theresa "Lynne" Thigpen (December 22, 1948 – March 12,
    2003) was an American actress, best known for her role as "The Chief" of ACME
    in the various Carmen Sandiego television series and computer games from 1991
    to 1997. For her varied television work, Thigpen was nominated for six Daytime
    Emmy Awards; she won a Tony Award in 1997 for portraying Dr. Judith Kaufman in
    An American Daughter.
  - The Washington Post The Washington Post is an American daily newspaper. It is
    the most widely circulated newspaper published in Washington, D.C., and was founded
    on December 6, 1877,[7] making it the area's oldest extant newspaper. In February
    2017, amid a barrage of criticism from President Donald Trump over the paper's
    coverage of his campaign and early presidency as well as concerns among the American
    press about Trump's criticism and threats against journalists who provide coverage
    he deems unfavorable, the Post adopted the slogan "Democracy Dies in Darkness".[8]
- source_sentence: how old was messi when he started his career
  sentences:
  - Lionel Messi Born and raised in central Argentina, Messi was diagnosed with a
    growth hormone deficiency as a child. At age 13, he relocated to Spain to join
    Barcelona, who agreed to pay for his medical treatment. After a fast progression
    through Barcelona's youth academy, Messi made his competitive debut aged 17 in
    October 2004. Despite being injury-prone during his early career, he established
    himself as an integral player for the club within the next three years, finishing
    2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year
    award, a feat he repeated the following year. His first uninterrupted campaign
    came in the 2008–09 season, during which he helped Barcelona achieve the first
    treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA
    World Player of the Year award by record voting margins.
  - We Are Marshall Filming of We Are Marshall commenced on April 3, 2006, in Huntington,
    West Virginia, and was completed in Atlanta, Georgia. The premiere for the film
    was held at the Keith Albee Theater on December 12, 2006, in Huntington; other
    special screenings were held at Pullman Square. The movie was released nationwide
    on December 22, 2006.
  - One Fish, Two Fish, Red Fish, Blue Fish One Fish, Two Fish, Red Fish, Blue Fish
    is a 1960 children's book by Dr. Seuss. It is a simple rhyming book for beginning
    readers, with a freewheeling plot about a boy and a girl named Jay and Kay and
    the many amazing creatures they have for friends and pets. Interspersed are some
    rather surreal and unrelated skits, such as a man named Ned whose feet stick out
    from his bed, and a creature who has a bird in his ear. As of 2001, over 6 million
    copies of the book had been sold, placing it 13th on a list of "All-Time Bestselling

    Children's Books" from Publishers Weekly.[1] Based on a 2007 online poll, the
    United States' National Education Association labor union named the book one of
    its "Teachers' Top 100 Books for Children."[2]
- source_sentence: is send in the clowns from a musical
  sentences:
  - Money in the Bank ladder match The first match was contested in 2005 at WrestleMania
    21, after being invented (in kayfabe) by Chris Jericho.[1] At the time, it was
    exclusive to wrestlers of the Raw brand, and Edge won the inaugural match.[1]
    From then until 2010, the Money in the Bank ladder match, now open to all WWE
    brands, became a WrestleMania mainstay. 2010 saw a second and third Money in the
    Bank ladder match when the Money in the Bank pay-per-view debuted in July. Unlike
    the matches at WrestleMania, this new event featured two such ladder matches –
    one each for a contract for the WWE Championship and World Heavyweight Championship,
    respectively.
  - The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired
    on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off
    of the Disney Channel Original Series The Suite Life of Zack & Cody. The series
    follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in
    a new setting, the SS Tipton, where they attend classes at "Seven Seas High School"
    and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around
    the world to nations such as Italy, France, Greece, India, Sweden and the United
    Kingdom where the characters experience different cultures, adventures, and situations.[1]
  - 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim

    for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s

    film Smiles of a Summer Night. It is a ballad from Act Two, in which the character

    Desirée reflects on the ironies and disappointments of her life. Among other things,

    she looks back on an affair years earlier with the lawyer Fredrik, who was deeply

    in love with her but whose marriage proposals she had rejected. Meeting him after

    so long, she realizes she is in love with him and finally ready to marry him,

    but now it is he who rejects her: he is in an unconsummated marriage with a much

    younger woman. Desirée proposes marriage to rescue him from this situation, but

    he declines, citing his dedication to his bride. Reacting to his rejection, Desirée

    sings this song. The song is later reprised as a coda after Fredrik''s young wife

    runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- row_non_zero_mean_query
- row_sparsity_mean_query
- row_non_zero_mean_corpus
- row_sparsity_mean_corpus
co2_eq_emissions:
  emissions: 32.749162711505036
  energy_consumed: 0.08425262208968576
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.292
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: splade-distilbert-base-uncased trained on Natural Questions
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.24
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.44
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.72
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.24
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.14666666666666664
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.12000000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07200000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.24
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.44
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.6
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.72
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.46533877878819696
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3856269841269841
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3974184036014145
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 15.779999732971191
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9994829297065735
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 25.729328155517578
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9991570711135864
      name: Row Sparsity Mean Corpus
    - type: dot_accuracy@1
      value: 0.22
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.42
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.74
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.22
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.13999999999999999
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.12000000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07400000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.22
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.42
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.6
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.74
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.46328494594550307
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.37662698412698403
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3856610333651542
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 15.380000114440918
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9994961023330688
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 26.596866607666016
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9991285800933838
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.3
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.42
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.52
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.56
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.3
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2866666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.264
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.214
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.01879480879384032
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.05027421919442009
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.08706875727827264
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.11178880663195827
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.2582539565166507
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.38549999999999995
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.1034946476704924
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 20.18000030517578
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9993388652801514
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 30.07179069519043
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9990148544311523
      name: Row Sparsity Mean Corpus
    - type: dot_accuracy@1
      value: 0.34
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.52
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.52
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.58
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.34
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.3133333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.288
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.226
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.021422381525060468
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.0742401436593227
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.08995450762658255
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.11319066947710729
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.27630767880389084
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.42138888888888887
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.11387493422516994
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 18.81999969482422
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9993834495544434
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 30.65966796875
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9989954829216003
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.32
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.58
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.64
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.32
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.16666666666666663
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.11599999999999999
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.064
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.31
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.49
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.56
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.61
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.46811217927927307
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.43099999999999994
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4334878570971412
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 15.079999923706055
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9995059370994568
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 22.96107292175293
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.999247670173645
      name: Row Sparsity Mean Corpus
    - type: dot_accuracy@1
      value: 0.3
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.62
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.68
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.3
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.16666666666666663
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.124
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.29
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.49
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.6
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.66
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4796509872234161
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.42804761904761895
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4288636915548681
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 14.399999618530273
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.999528169631958
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 23.73485565185547
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9992223381996155
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.2866666666666667
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.4533333333333333
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.5666666666666668
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.64
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.2866666666666667
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.19999999999999998
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16666666666666666
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.11666666666666668
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.1895982695979468
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.3267580730648067
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.4156895857594242
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.4805962688773194
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.39723497152804027
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.40070899470899474
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3114669694563494
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 17.013333320617676
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9994425773620605
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 26.254063924153645
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9991398652394613
      name: Row Sparsity Mean Corpus
    - type: dot_accuracy@1
      value: 0.4023861852433281
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5827315541601256
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6721193092621665
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7583987441130299
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.4023861852433281
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.25922553636839346
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.2099277864992151
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.14982417582417581
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.22672192221710946
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.36838967779676207
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.44570232082548333
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5264378082924004
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4631187549753249
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5167952081931673
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.38677121563396466
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 19.27265313955454
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9993685804880582
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 27.068602635310246
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9991131195655236
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.18
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.36
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.44
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.6
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.18
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.13333333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.1
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.07
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.1733333333333333
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.2033333333333333
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.28
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.216118762316258
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.2994126984126984
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.16840852597130174
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 25.020000457763672
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9991803169250488
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 27.777875900268555
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9990898966789246
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: dot_accuracy@1
      value: 0.6
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.82
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.86
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.6
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.48666666666666664
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.4439999999999999
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.4000000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.05376110547712118
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.15092123200468407
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.19238478534118364
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.2793082705020891
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4933229100355268
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7174126984126984
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3647742683351921
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 14.34000015258789
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9995301961898804
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 22.812902450561523
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9992524981498718
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.62
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.82
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.62
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.28
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.184
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.092
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.61
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.7866666666666666
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.8566666666666666
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8566666666666666
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.7518512751926597
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7293333333333335
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.7119416486291485
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 17.84000015258789
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9994155168533325
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 25.645116806030273
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9991597533226013
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: dot_accuracy@1
      value: 0.22
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.32
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.44
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.54
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.22
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.1333333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.11599999999999999
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07600000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.138
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.25
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.32938888888888884
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.3908015873015873
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.29315131681028644
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.30430158730158724
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.2444001739214205
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 18.940000534057617
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9993795156478882
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 27.020782470703125
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9991146922111511
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: dot_accuracy@1
      value: 0.64
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.82
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.82
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.86
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.64
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.37333333333333324
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.23199999999999996
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.132
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.32
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.56
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.58
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.66
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.60467671511462
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7286666666666669
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5280557928272471
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 18.799999237060547
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9993841648101807
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 24.752653121948242
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.999189019203186
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: dot_accuracy@1
      value: 0.64
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.84
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.88
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.98
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.64
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.32
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.21999999999999997
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.12399999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.5740000000000001
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.768
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.8446666666666667
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9553333333333334
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.7881541877243683
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7535238095238094
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.727066872303161
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 17.780000686645508
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9994174242019653
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 19.436979293823242
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9993631839752197
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: dot_accuracy@1
      value: 0.36
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.48
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.62
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.76
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.36
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.21333333333333332
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.20400000000000001
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.154
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.07666666666666667
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.13366666666666668
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.21066666666666667
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.31666666666666665
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.29354115188538094
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4672380952380951
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.21425734227573925
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 24.84000015258789
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9991861581802368
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 34.34458923339844
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9988747239112854
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: dot_accuracy@1
      value: 0.18
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.4
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.54
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.18
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.13333333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.10800000000000001
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.18
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.4
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.54
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.7
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4216491858751158
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.33469047619047615
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.34714031247291627
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 29.360000610351562
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9990381002426147
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 29.988996505737305
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9990174770355225
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: dot_accuracy@1
      value: 0.38
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.62
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.66
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.38
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.18
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.136
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07400000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.355
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.475
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.59
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.64
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5021918146434317
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.467
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.462876176092865
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 19.799999237060547
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9993513226509094
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 27.219938278198242
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9991081357002258
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: dot_accuracy@1
      value: 0.5510204081632653
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.7755102040816326
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.8775510204081632
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9591836734693877
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.5510204081632653
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.4965986394557823
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.4530612244897959
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.3857142857142857
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.038534835153574185
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.1072377690272331
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.15706865554129606
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.25172431385375454
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4366428831087667
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6906948493683187
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.33070503126735623
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 15.22449016571045
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.99950110912323
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 31.900609970092773
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9989547729492188
      name: Row Sparsity Mean Corpus
---


# splade-distilbert-base-uncased trained on Natural Questions

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```

SparseEncoder(

  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 

  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SparseEncoder



# Download from the 🤗 Hub

model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-nq-e-3")

# Run inference

sentences = [

    'is send in the clowns from a musical',

    'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',

    'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# (3, 30522)



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                   | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:-------------------------|:------------|:-------------|:-----------|:-----------------|:------------|:-----------|:-------------|:-------------|:-------------------|:------------|:------------|:------------|:---------------|
| dot_accuracy@1           | 0.22        | 0.34         | 0.3        | 0.18             | 0.6         | 0.62       | 0.22         | 0.64         | 0.64               | 0.36        | 0.18        | 0.38        | 0.551          |

| dot_accuracy@3           | 0.42        | 0.52         | 0.5        | 0.36             | 0.82        | 0.82       | 0.32         | 0.82         | 0.84               | 0.48        | 0.4         | 0.5         | 0.7755         |
| dot_accuracy@5           | 0.6         | 0.52         | 0.62       | 0.44             | 0.86        | 0.9        | 0.44         | 0.82         | 0.88               | 0.62        | 0.54        | 0.62        | 0.8776         |

| dot_accuracy@10          | 0.74        | 0.58         | 0.68       | 0.6              | 0.9         | 0.9        | 0.54         | 0.86         | 0.98               | 0.76        | 0.7         | 0.66        | 0.9592         |
| dot_precision@1          | 0.22        | 0.34         | 0.3        | 0.18             | 0.6         | 0.62       | 0.22         | 0.64         | 0.64               | 0.36        | 0.18        | 0.38        | 0.551          |

| dot_precision@3          | 0.14        | 0.3133       | 0.1667     | 0.1333           | 0.4867      | 0.28       | 0.1333       | 0.3733       | 0.32               | 0.2133      | 0.1333      | 0.18        | 0.4966         |
| dot_precision@5          | 0.12        | 0.288        | 0.124      | 0.1              | 0.444       | 0.184      | 0.116        | 0.232        | 0.22               | 0.204       | 0.108       | 0.136       | 0.4531         |

| dot_precision@10         | 0.074       | 0.226        | 0.07       | 0.07             | 0.4         | 0.092      | 0.076        | 0.132        | 0.124              | 0.154       | 0.07        | 0.074       | 0.3857         |
| dot_recall@1             | 0.22        | 0.0214       | 0.29       | 0.07             | 0.0538      | 0.61       | 0.138        | 0.32         | 0.574              | 0.0767      | 0.18        | 0.355       | 0.0385         |

| dot_recall@3             | 0.42        | 0.0742       | 0.49       | 0.1733           | 0.1509      | 0.7867     | 0.25         | 0.56         | 0.768              | 0.1337      | 0.4         | 0.475       | 0.1072         |
| dot_recall@5             | 0.6         | 0.09         | 0.6        | 0.2033           | 0.1924      | 0.8567     | 0.3294       | 0.58         | 0.8447             | 0.2107      | 0.54        | 0.59        | 0.1571         |

| dot_recall@10            | 0.74        | 0.1132       | 0.66       | 0.28             | 0.2793      | 0.8567     | 0.3908       | 0.66         | 0.9553             | 0.3167      | 0.7         | 0.64        | 0.2517         |
| **dot_ndcg@10**          | **0.4633**  | **0.2763**   | **0.4797** | **0.2161**       | **0.4933**  | **0.7519** | **0.2932**   | **0.6047**   | **0.7882**         | **0.2935**  | **0.4216**  | **0.5022**  | **0.4366**     |

| dot_mrr@10               | 0.3766      | 0.4214       | 0.428      | 0.2994           | 0.7174      | 0.7293     | 0.3043       | 0.7287       | 0.7535             | 0.4672      | 0.3347      | 0.467       | 0.6907         |

| dot_map@100              | 0.3857      | 0.1139       | 0.4289     | 0.1684           | 0.3648      | 0.7119     | 0.2444       | 0.5281       | 0.7271             | 0.2143      | 0.3471      | 0.4629      | 0.3307         |

| row_non_zero_mean_query  | 15.38       | 18.82        | 14.4       | 25.02            | 14.34       | 17.84      | 18.94        | 18.8         | 17.78              | 24.84       | 29.36       | 19.8        | 15.2245        |

| row_sparsity_mean_query  | 0.9995      | 0.9994       | 0.9995     | 0.9992           | 0.9995      | 0.9994     | 0.9994       | 0.9994       | 0.9994             | 0.9992      | 0.999       | 0.9994      | 0.9995         |

| row_non_zero_mean_corpus | 26.5969     | 30.6597      | 23.7349    | 27.7779          | 22.8129     | 25.6451    | 27.0208      | 24.7527      | 19.437             | 34.3446     | 29.989      | 27.2199     | 31.9006        |

| row_sparsity_mean_corpus | 0.9991      | 0.999        | 0.9992     | 0.9991           | 0.9993      | 0.9992     | 0.9991       | 0.9992       | 0.9994             | 0.9989      | 0.999       | 0.9991      | 0.999          |



#### Sparse Nano BEIR



* Dataset: `NanoBEIR_mean`

* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [

          "msmarco",

          "nfcorpus",

          "nq"

      ]

  }

  ```



| Metric                   | Value      |

|:-------------------------|:-----------|

| dot_accuracy@1           | 0.2867     |

| dot_accuracy@3           | 0.4533     |

| dot_accuracy@5           | 0.5667     |

| dot_accuracy@10          | 0.64       |

| dot_precision@1          | 0.2867     |

| dot_precision@3          | 0.2        |

| dot_precision@5          | 0.1667     |

| dot_precision@10         | 0.1167     |

| dot_recall@1             | 0.1896     |

| dot_recall@3             | 0.3268     |

| dot_recall@5             | 0.4157     |

| dot_recall@10            | 0.4806     |

| **dot_ndcg@10**          | **0.3972** |
| dot_mrr@10               | 0.4007     |

| dot_map@100              | 0.3115     |
| row_non_zero_mean_query  | 17.0133    |
| row_sparsity_mean_query  | 0.9994     |

| row_non_zero_mean_corpus | 26.2541    |

| row_sparsity_mean_corpus | 0.9991     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json

  {

      "dataset_names": [

          "climatefever",

          "dbpedia",

          "fever",

          "fiqa2018",

          "hotpotqa",

          "msmarco",

          "nfcorpus",

          "nq",

          "quoraretrieval",

          "scidocs",

          "arguana",

          "scifact",

          "touche2020"

      ]

  }

  ```

| Metric                   | Value      |
|:-------------------------|:-----------|
| dot_accuracy@1           | 0.4024     |

| dot_accuracy@3           | 0.5827     |
| dot_accuracy@5           | 0.6721     |

| dot_accuracy@10          | 0.7584     |
| dot_precision@1          | 0.4024     |

| dot_precision@3          | 0.2592     |
| dot_precision@5          | 0.2099     |

| dot_precision@10         | 0.1498     |
| dot_recall@1             | 0.2267     |

| dot_recall@3             | 0.3684     |
| dot_recall@5             | 0.4457     |

| dot_recall@10            | 0.5264     |
| **dot_ndcg@10**          | **0.4631** |

| dot_mrr@10               | 0.5168     |

| dot_map@100              | 0.3868     |

| row_non_zero_mean_query  | 19.2727    |

| row_sparsity_mean_query  | 0.9994     |

| row_non_zero_mean_corpus | 27.0686    |

| row_sparsity_mean_corpus | 0.9991     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### natural-questions



* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)

* Size: 99,000 training samples

* Columns: <code>query</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                              | answer                                                                              |

  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                             | string                                                                              |

  | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |

* Samples:

  | query                                                         | answer                                                                                                                                                                                                                                                                                                                                                                                                                                  |

  |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>who played the father in papa don't preach</code>       | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code>                                                                                                                                                                                                                                                                                                                                                     |

  | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |

  | <code>how many puppies can a dog give birth to</code>         | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code>                                                                                                                                                                                                                                                      |

* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:

  ```json

  {'loss': SparseMultipleNegativesRankingLoss(

    (model): SparseEncoder(

      (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 

      (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})

    )

    (cross_entropy_loss): CrossEntropyLoss()

  ), 'lambda_corpus': 0.003, 'lambda_query': 0.005}

  ```



### Evaluation Dataset



#### natural-questions



* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)

* Size: 1,000 evaluation samples

* Columns: <code>query</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | query                                                                              | answer                                                                               |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|

  | type    | string                                                                             | string                                                                               |

  | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |

* Samples:

  | query                                                  | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

  |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |

  | <code>what kind of car does jay gatsby drive</code>    | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code>                                       |

  | <code>who sings if i can dream about you</code>        | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code>                                                                                                                                                                                                                   |

* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:

  ```json

  {'loss': SparseMultipleNegativesRankingLoss(

    (model): SparseEncoder(

      (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 

      (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})

    )

    (cross_entropy_loss): CrossEntropyLoss()

  ), 'lambda_corpus': 0.003, 'lambda_query': 0.005}

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 12

- `per_device_eval_batch_size`: 12

- `learning_rate`: 2e-05

- `num_train_epochs`: 1

- `bf16`: True

- `load_best_model_at_end`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 12

- `per_device_eval_batch_size`: 12

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `torch_empty_cache_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.0

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: True

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: True

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `include_for_metrics`: []

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `use_liger_kernel`: False

- `eval_use_gather_object`: False

- `average_tokens_across_devices`: False

- `prompts`: None

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

| Epoch   | Step     | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |

|:-------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|

| 0.0242  | 200      | 4.6206        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.0485  | 400      | 0.074         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.0727  | 600      | 0.0441        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.0970  | 800      | 0.0288        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.1212  | 1000     | 0.0395        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.1455  | 1200     | 0.0387        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.1697  | 1400     | 0.039         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.1939  | 1600     | 0.0274        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.2     | 1650     | -             | 0.0425          | 0.4834                  | 0.2578                   | 0.4469             | 0.3960                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.2182  | 1800     | 0.0317        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.2424  | 2000     | 0.0563        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.2667  | 2200     | 0.0521        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.2909  | 2400     | 0.0481        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.3152  | 2600     | 0.0562        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.3394  | 2800     | 0.0524        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.3636  | 3000     | 0.0477        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.3879  | 3200     | 0.0579        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.4     | 3300     | -             | 0.0544          | 0.4270                  | 0.2376                   | 0.4740             | 0.3795                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.4121  | 3400     | 0.0458        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.4364  | 3600     | 0.0477        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.4606  | 3800     | 0.0479        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.4848  | 4000     | 0.046         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.5091  | 4200     | 0.0382        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.5333  | 4400     | 0.0442        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.5576  | 4600     | 0.0405        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.5818  | 4800     | 0.0417        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.6     | 4950     | -             | 0.0416          | 0.4677                  | 0.2401                   | 0.4760             | 0.3946                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.6061  | 5000     | 0.033         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.6303  | 5200     | 0.0437        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.6545  | 5400     | 0.0351        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.6788  | 5600     | 0.0387        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.7030  | 5800     | 0.048         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.7273  | 6000     | 0.0498        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.7515  | 6200     | 0.0442        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| 0.7758  | 6400     | 0.0359        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |

| **0.8** | **6600** | **0.0398**    | **0.0403**      | **0.4633**              | **0.2763**               | **0.4797**         | **0.4064**                | **-**                        | **-**                   | **-**                 | **-**                    | **-**                    | **-**                          | **-**                   | **-**                   | **-**                   | **-**                      |
| 0.8242  | 6800     | 0.0364        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8485  | 7000     | 0.0363        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8727  | 7200     | 0.0344        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8970  | 7400     | 0.0351        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9212  | 7600     | 0.0296        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9455  | 7800     | 0.0363        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9697  | 8000     | 0.0387        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9939  | 8200     | 0.041         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 1.0     | 8250     | -             | 0.0413          | 0.4653                  | 0.2583                   | 0.4681             | 0.3972                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| -1      | -1       | -             | -               | 0.4633                  | 0.2763                   | 0.4797             | 0.4631                    | 0.2161                       | 0.4933                  | 0.7519                | 0.2932                   | 0.6047                   | 0.7882                         | 0.2935                  | 0.4216                  | 0.5022                  | 0.4366                     |

* The bold row denotes the saved checkpoint.

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.084 kWh
- **Carbon Emitted**: 0.033 kg of CO2
- **Hours Used**: 0.292 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```

#### SpladeLoss
```bibtex

@misc{formal2022distillationhardnegativesampling,

      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},

      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},

      year={2022},

      eprint={2205.04733},

      archivePrefix={arXiv},

      primaryClass={cs.IR},

      url={https://arxiv.org/abs/2205.04733},

}

```

#### SparseMultipleNegativesRankingLoss
```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```

#### FlopsLoss
```bibtex

@article{paria2020minimizing,

    title={Minimizing flops to learn efficient sparse representations},

    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},

    journal={arXiv preprint arXiv:2004.05665},

    year={2020}

    }

```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->