tomaarsen HF Staff commited on
Commit
c070bd7
·
verified ·
1 Parent(s): f790e6f

Add new SparseEncoder model

Browse files
1_SpladePooling/config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "pooling_strategy": "max",
3
+ "activation_function": "relu",
4
+ "word_embedding_dimension": 30522
5
+ }
README.md ADDED
@@ -0,0 +1,880 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sparse-encoder
8
+ - generated_from_trainer
9
+ - dataset_size:99000
10
+ - loss:SpladeLoss
11
+ base_model: distilbert/distilbert-base-uncased
12
+ widget:
13
+ - source_sentence: who are the dancers in the limp bizkit rollin video
14
+ sentences:
15
+ - Voting age Before the Second World War, the voting age in almost all countries
16
+ was 21 years or higher. Czechoslovakia was the first to reduce the voting age
17
+ to 20 years in 1946, and by 1968 a total of 17 countries had lowered their voting
18
+ age.[1] Many countries, particularly in Western Europe, reduced their voting ages
19
+ to 18 years during the 1970s, starting with the United Kingdom (1969),[2] with
20
+ the United States (26th Amendment) (1971), Canada, West Germany (1972), Australia
21
+ (1974), France (1974), and others following soon afterwards. By the end of the
22
+ 20th century, 18 had become by far the most common voting age. However, a few
23
+ countries maintain a voting age of 20 years or higher. It was argued that young
24
+ men could be drafted to go to war at 18, and many people felt they should be able
25
+ to vote at the age of 18.[3]
26
+ - Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower of
27
+ the former World Trade Center in New York City. The introduction features Ben
28
+ Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the
29
+ keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles.
30
+ The rest of the video has several cuts to Durst and his bandmates hanging out
31
+ of the Bentley as they drive about Manhattan. The song Ben Stiller is playing
32
+ at the beginning is "My Generation" from the same album. The video also features
33
+ scenes of Fred Durst with five girls dancing in a room. The video was filmed around
34
+ the same time as the film Zoolander, which explains Stiller and Dorff's appearance.
35
+ Fred Durst has a small cameo in that film.
36
+ - Eobard Thawne When Thawne reappears, he murders the revived Johnny Quick,[9] before
37
+ proceeding to trap Barry and the revived Max Mercury inside the negative Speed
38
+ Force. Thawne then attempts to kill Wally West's children through their connection
39
+ to the Speed Force in front of Linda Park-West, only to be stopped by Jay Garrick
40
+ and Bart Allen. Thawne defeats Jay and prepares to kill Bart, but Barry, Max,
41
+ Wally, Jesse Quick, and Impulse arrive to prevent the villain from doing so.[8][10]
42
+ In the ensuing fight, Thawne reveals that he is responsible for every tragedy
43
+ that has occurred in Barry's life, including the death of his mother. Thawne then
44
+ decides to destroy everything the Flash holds dear by killing Barry's wife, Iris,
45
+ before they even met.[10]
46
+ - source_sentence: who wins season 14 of hell's kitchen
47
+ sentences:
48
+ - Hell's Kitchen (U.S. season 14) Season 14 of the American competitive reality
49
+ television series Hell's Kitchen premiered on March 3, 2015 on Fox. The prize
50
+ is a head chef position at Gordon Ramsay Pub & Grill in Caesars Atlantic City.[1]
51
+ Gordon Ramsay returned as head chef with Andi Van Willigan and James Avery returning
52
+ as sous-chefs for both their respective kitchens as well as Marino Monferrato
53
+ as the maître d'. Executive chef Meghan Gill from Roanoke, Virginia, won the
54
+ competition, thus becoming the fourteenth winner of Hell's Kitchen.
55
+ - 'Maze Runner: The Death Cure On April 22, 2017, the studio delayed the release
56
+ date once again, to February 9, 2018, in order to allow more time for post-production;
57
+ months later, on August 25, the studio moved the release forward two weeks.[17]
58
+ The film will premiere on January 26, 2018 in 3D, IMAX and IMAX 3D.[18][19]'
59
+ - North American Plate On its western edge, the Farallon Plate has been subducting
60
+ under the North American Plate since the Jurassic Period. The Farallon Plate has
61
+ almost completely subducted beneath the western portion of the North American
62
+ Plate leaving that part of the North American Plate in contact with the Pacific
63
+ Plate as the San Andreas Fault. The Juan de Fuca, Explorer, Gorda, Rivera, Cocos
64
+ and Nazca plates are remnants of the Farallon Plate.
65
+ - source_sentence: who played the dj in the movie the warriors
66
+ sentences:
67
+ - List of Arrow episodes As of May 17, 2018,[update] 138 episodes of Arrow have
68
+ aired, concluding the sixth season. On April 2, 2018, the CW renewed the series
69
+ for a seventh season.[1]
70
+ - Lynne Thigpen Cherlynne Theresa "Lynne" Thigpen (December 22, 1948 – March 12,
71
+ 2003) was an American actress, best known for her role as "The Chief" of ACME
72
+ in the various Carmen Sandiego television series and computer games from 1991
73
+ to 1997. For her varied television work, Thigpen was nominated for six Daytime
74
+ Emmy Awards; she won a Tony Award in 1997 for portraying Dr. Judith Kaufman in
75
+ An American Daughter.
76
+ - The Washington Post The Washington Post is an American daily newspaper. It is
77
+ the most widely circulated newspaper published in Washington, D.C., and was founded
78
+ on December 6, 1877,[7] making it the area's oldest extant newspaper. In February
79
+ 2017, amid a barrage of criticism from President Donald Trump over the paper's
80
+ coverage of his campaign and early presidency as well as concerns among the American
81
+ press about Trump's criticism and threats against journalists who provide coverage
82
+ he deems unfavorable, the Post adopted the slogan "Democracy Dies in Darkness".[8]
83
+ - source_sentence: how old was messi when he started his career
84
+ sentences:
85
+ - Lionel Messi Born and raised in central Argentina, Messi was diagnosed with a
86
+ growth hormone deficiency as a child. At age 13, he relocated to Spain to join
87
+ Barcelona, who agreed to pay for his medical treatment. After a fast progression
88
+ through Barcelona's youth academy, Messi made his competitive debut aged 17 in
89
+ October 2004. Despite being injury-prone during his early career, he established
90
+ himself as an integral player for the club within the next three years, finishing
91
+ 2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year
92
+ award, a feat he repeated the following year. His first uninterrupted campaign
93
+ came in the 2008–09 season, during which he helped Barcelona achieve the first
94
+ treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA
95
+ World Player of the Year award by record voting margins.
96
+ - We Are Marshall Filming of We Are Marshall commenced on April 3, 2006, in Huntington,
97
+ West Virginia, and was completed in Atlanta, Georgia. The premiere for the film
98
+ was held at the Keith Albee Theater on December 12, 2006, in Huntington; other
99
+ special screenings were held at Pullman Square. The movie was released nationwide
100
+ on December 22, 2006.
101
+ - One Fish, Two Fish, Red Fish, Blue Fish One Fish, Two Fish, Red Fish, Blue Fish
102
+ is a 1960 children's book by Dr. Seuss. It is a simple rhyming book for beginning
103
+ readers, with a freewheeling plot about a boy and a girl named Jay and Kay and
104
+ the many amazing creatures they have for friends and pets. Interspersed are some
105
+ rather surreal and unrelated skits, such as a man named Ned whose feet stick out
106
+ from his bed, and a creature who has a bird in his ear. As of 2001, over 6 million
107
+ copies of the book had been sold, placing it 13th on a list of "All-Time Bestselling
108
+ Children's Books" from Publishers Weekly.[1] Based on a 2007 online poll, the
109
+ United States' National Education Association labor union named the book one of
110
+ its "Teachers' Top 100 Books for Children."[2]
111
+ - source_sentence: is send in the clowns from a musical
112
+ sentences:
113
+ - Money in the Bank ladder match The first match was contested in 2005 at WrestleMania
114
+ 21, after being invented (in kayfabe) by Chris Jericho.[1] At the time, it was
115
+ exclusive to wrestlers of the Raw brand, and Edge won the inaugural match.[1]
116
+ From then until 2010, the Money in the Bank ladder match, now open to all WWE
117
+ brands, became a WrestleMania mainstay. 2010 saw a second and third Money in the
118
+ Bank ladder match when the Money in the Bank pay-per-view debuted in July. Unlike
119
+ the matches at WrestleMania, this new event featured two such ladder matches –
120
+ one each for a contract for the WWE Championship and World Heavyweight Championship,
121
+ respectively.
122
+ - The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired
123
+ on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off
124
+ of the Disney Channel Original Series The Suite Life of Zack & Cody. The series
125
+ follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in
126
+ a new setting, the SS Tipton, where they attend classes at "Seven Seas High School"
127
+ and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around
128
+ the world to nations such as Italy, France, Greece, India, Sweden and the United
129
+ Kingdom where the characters experience different cultures, adventures, and situations.[1]
130
+ - 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim
131
+ for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s
132
+ film Smiles of a Summer Night. It is a ballad from Act Two, in which the character
133
+ Desirée reflects on the ironies and disappointments of her life. Among other things,
134
+ she looks back on an affair years earlier with the lawyer Fredrik, who was deeply
135
+ in love with her but whose marriage proposals she had rejected. Meeting him after
136
+ so long, she realizes she is in love with him and finally ready to marry him,
137
+ but now it is he who rejects her: he is in an unconsummated marriage with a much
138
+ younger woman. Desirée proposes marriage to rescue him from this situation, but
139
+ he declines, citing his dedication to his bride. Reacting to his rejection, Desirée
140
+ sings this song. The song is later reprised as a coda after Fredrik''s young wife
141
+ runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]'
142
+ datasets:
143
+ - sentence-transformers/natural-questions
144
+ pipeline_tag: feature-extraction
145
+ library_name: sentence-transformers
146
+ metrics:
147
+ - dot_accuracy@1
148
+ - dot_accuracy@3
149
+ - dot_accuracy@5
150
+ - dot_accuracy@10
151
+ - dot_precision@1
152
+ - dot_precision@3
153
+ - dot_precision@5
154
+ - dot_precision@10
155
+ - dot_recall@1
156
+ - dot_recall@3
157
+ - dot_recall@5
158
+ - dot_recall@10
159
+ - dot_ndcg@10
160
+ - dot_mrr@10
161
+ - dot_map@100
162
+ co2_eq_emissions:
163
+ emissions: 38.77153127131781
164
+ energy_consumed: 0.09974615842295079
165
+ source: codecarbon
166
+ training_type: fine-tuning
167
+ on_cloud: false
168
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
169
+ ram_total_size: 31.777088165283203
170
+ hours_used: 0.286
171
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
172
+ model-index:
173
+ - name: Distilbert base trained on Natural-Questions tuples
174
+ results:
175
+ - task:
176
+ type: sparse-information-retrieval
177
+ name: Sparse Information Retrieval
178
+ dataset:
179
+ name: NanoMSMARCO
180
+ type: NanoMSMARCO
181
+ metrics:
182
+ - type: dot_accuracy@1
183
+ value: 0.32
184
+ name: Dot Accuracy@1
185
+ - type: dot_accuracy@3
186
+ value: 0.48
187
+ name: Dot Accuracy@3
188
+ - type: dot_accuracy@5
189
+ value: 0.56
190
+ name: Dot Accuracy@5
191
+ - type: dot_accuracy@10
192
+ value: 0.72
193
+ name: Dot Accuracy@10
194
+ - type: dot_precision@1
195
+ value: 0.32
196
+ name: Dot Precision@1
197
+ - type: dot_precision@3
198
+ value: 0.15999999999999998
199
+ name: Dot Precision@3
200
+ - type: dot_precision@5
201
+ value: 0.11200000000000002
202
+ name: Dot Precision@5
203
+ - type: dot_precision@10
204
+ value: 0.07200000000000001
205
+ name: Dot Precision@10
206
+ - type: dot_recall@1
207
+ value: 0.32
208
+ name: Dot Recall@1
209
+ - type: dot_recall@3
210
+ value: 0.48
211
+ name: Dot Recall@3
212
+ - type: dot_recall@5
213
+ value: 0.56
214
+ name: Dot Recall@5
215
+ - type: dot_recall@10
216
+ value: 0.72
217
+ name: Dot Recall@10
218
+ - type: dot_ndcg@10
219
+ value: 0.49795280717642465
220
+ name: Dot Ndcg@10
221
+ - type: dot_mrr@10
222
+ value: 0.4296904761904761
223
+ name: Dot Mrr@10
224
+ - type: dot_map@100
225
+ value: 0.44104246210992665
226
+ name: Dot Map@100
227
+ - task:
228
+ type: sparse-information-retrieval
229
+ name: Sparse Information Retrieval
230
+ dataset:
231
+ name: NanoNFCorpus
232
+ type: NanoNFCorpus
233
+ metrics:
234
+ - type: dot_accuracy@1
235
+ value: 0.32
236
+ name: Dot Accuracy@1
237
+ - type: dot_accuracy@3
238
+ value: 0.42
239
+ name: Dot Accuracy@3
240
+ - type: dot_accuracy@5
241
+ value: 0.48
242
+ name: Dot Accuracy@5
243
+ - type: dot_accuracy@10
244
+ value: 0.58
245
+ name: Dot Accuracy@10
246
+ - type: dot_precision@1
247
+ value: 0.32
248
+ name: Dot Precision@1
249
+ - type: dot_precision@3
250
+ value: 0.2866666666666666
251
+ name: Dot Precision@3
252
+ - type: dot_precision@5
253
+ value: 0.284
254
+ name: Dot Precision@5
255
+ - type: dot_precision@10
256
+ value: 0.236
257
+ name: Dot Precision@10
258
+ - type: dot_recall@1
259
+ value: 0.0190521112547902
260
+ name: Dot Recall@1
261
+ - type: dot_recall@3
262
+ value: 0.04914292812017889
263
+ name: Dot Recall@3
264
+ - type: dot_recall@5
265
+ value: 0.06674507117080097
266
+ name: Dot Recall@5
267
+ - type: dot_recall@10
268
+ value: 0.08932730701320218
269
+ name: Dot Recall@10
270
+ - type: dot_ndcg@10
271
+ value: 0.2700007702093806
272
+ name: Dot Ndcg@10
273
+ - type: dot_mrr@10
274
+ value: 0.39385714285714285
275
+ name: Dot Mrr@10
276
+ - type: dot_map@100
277
+ value: 0.11206130497048808
278
+ name: Dot Map@100
279
+ - task:
280
+ type: sparse-information-retrieval
281
+ name: Sparse Information Retrieval
282
+ dataset:
283
+ name: NanoNQ
284
+ type: NanoNQ
285
+ metrics:
286
+ - type: dot_accuracy@1
287
+ value: 0.48
288
+ name: Dot Accuracy@1
289
+ - type: dot_accuracy@3
290
+ value: 0.68
291
+ name: Dot Accuracy@3
292
+ - type: dot_accuracy@5
293
+ value: 0.72
294
+ name: Dot Accuracy@5
295
+ - type: dot_accuracy@10
296
+ value: 0.76
297
+ name: Dot Accuracy@10
298
+ - type: dot_precision@1
299
+ value: 0.48
300
+ name: Dot Precision@1
301
+ - type: dot_precision@3
302
+ value: 0.22666666666666668
303
+ name: Dot Precision@3
304
+ - type: dot_precision@5
305
+ value: 0.14400000000000002
306
+ name: Dot Precision@5
307
+ - type: dot_precision@10
308
+ value: 0.08
309
+ name: Dot Precision@10
310
+ - type: dot_recall@1
311
+ value: 0.46
312
+ name: Dot Recall@1
313
+ - type: dot_recall@3
314
+ value: 0.64
315
+ name: Dot Recall@3
316
+ - type: dot_recall@5
317
+ value: 0.67
318
+ name: Dot Recall@5
319
+ - type: dot_recall@10
320
+ value: 0.73
321
+ name: Dot Recall@10
322
+ - type: dot_ndcg@10
323
+ value: 0.6093833020928028
324
+ name: Dot Ndcg@10
325
+ - type: dot_mrr@10
326
+ value: 0.5884126984126984
327
+ name: Dot Mrr@10
328
+ - type: dot_map@100
329
+ value: 0.5708635686564075
330
+ name: Dot Map@100
331
+ - task:
332
+ type: sparse-nano-beir
333
+ name: Sparse Nano BEIR
334
+ dataset:
335
+ name: NanoBEIR mean
336
+ type: NanoBEIR_mean
337
+ metrics:
338
+ - type: dot_accuracy@1
339
+ value: 0.37333333333333335
340
+ name: Dot Accuracy@1
341
+ - type: dot_accuracy@3
342
+ value: 0.5266666666666667
343
+ name: Dot Accuracy@3
344
+ - type: dot_accuracy@5
345
+ value: 0.5866666666666667
346
+ name: Dot Accuracy@5
347
+ - type: dot_accuracy@10
348
+ value: 0.6866666666666665
349
+ name: Dot Accuracy@10
350
+ - type: dot_precision@1
351
+ value: 0.37333333333333335
352
+ name: Dot Precision@1
353
+ - type: dot_precision@3
354
+ value: 0.22444444444444445
355
+ name: Dot Precision@3
356
+ - type: dot_precision@5
357
+ value: 0.18000000000000002
358
+ name: Dot Precision@5
359
+ - type: dot_precision@10
360
+ value: 0.12933333333333333
361
+ name: Dot Precision@10
362
+ - type: dot_recall@1
363
+ value: 0.2663507037515967
364
+ name: Dot Recall@1
365
+ - type: dot_recall@3
366
+ value: 0.38971430937339296
367
+ name: Dot Recall@3
368
+ - type: dot_recall@5
369
+ value: 0.4322483570569337
370
+ name: Dot Recall@5
371
+ - type: dot_recall@10
372
+ value: 0.513109102337734
373
+ name: Dot Recall@10
374
+ - type: dot_ndcg@10
375
+ value: 0.459112293159536
376
+ name: Dot Ndcg@10
377
+ - type: dot_mrr@10
378
+ value: 0.4706534391534391
379
+ name: Dot Mrr@10
380
+ - type: dot_map@100
381
+ value: 0.3746557785789408
382
+ name: Dot Map@100
383
+ ---
384
+
385
+ # Distilbert base trained on Natural-Questions tuples
386
+
387
+ This is a [Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
388
+
389
+ ## Model Details
390
+
391
+ ### Model Description
392
+ - **Model Type:** Sparse Encoder
393
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
394
+ - **Maximum Sequence Length:** 512 tokens
395
+ - **Training Dataset:**
396
+ - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
397
+ - **Language:** en
398
+ - **License:** apache-2.0
399
+
400
+ ### Model Sources
401
+
402
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
403
+ - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
404
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
405
+ - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
406
+
407
+ ## Usage
408
+
409
+ ### Direct Usage (Sentence Transformers)
410
+
411
+ First install the Sentence Transformers library:
412
+
413
+ ```bash
414
+ pip install -U sentence-transformers
415
+ ```
416
+
417
+ Then you can load this model and run inference.
418
+ ```python
419
+ from sentence_transformers import SparseEncoder
420
+
421
+ # Download from the 🤗 Hub
422
+ model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-nq")
423
+ # Run inference
424
+ sentences = [
425
+ 'is send in the clowns from a musical',
426
+ 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
427
+ 'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
428
+ ]
429
+ embeddings = model.encode(sentences)
430
+ print(embeddings.shape)
431
+ # (3, 30522)
432
+
433
+ # Get the similarity scores for the embeddings
434
+ similarities = model.similarity(embeddings, embeddings)
435
+ print(similarities.shape)
436
+ # [3, 3]
437
+ ```
438
+
439
+ <!--
440
+ ### Direct Usage (Transformers)
441
+
442
+ <details><summary>Click to see the direct usage in Transformers</summary>
443
+
444
+ </details>
445
+ -->
446
+
447
+ <!--
448
+ ### Downstream Usage (Sentence Transformers)
449
+
450
+ You can finetune this model on your own dataset.
451
+
452
+ <details><summary>Click to expand</summary>
453
+
454
+ </details>
455
+ -->
456
+
457
+ <!--
458
+ ### Out-of-Scope Use
459
+
460
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
461
+ -->
462
+
463
+ ## Evaluation
464
+
465
+ ### Metrics
466
+
467
+ #### Sparse Information Retrieval
468
+
469
+ * Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
470
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
471
+
472
+ | Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
473
+ |:-----------------|:------------|:-------------|:-----------|
474
+ | dot_accuracy@1 | 0.32 | 0.32 | 0.48 |
475
+ | dot_accuracy@3 | 0.48 | 0.42 | 0.68 |
476
+ | dot_accuracy@5 | 0.56 | 0.48 | 0.72 |
477
+ | dot_accuracy@10 | 0.72 | 0.58 | 0.76 |
478
+ | dot_precision@1 | 0.32 | 0.32 | 0.48 |
479
+ | dot_precision@3 | 0.16 | 0.2867 | 0.2267 |
480
+ | dot_precision@5 | 0.112 | 0.284 | 0.144 |
481
+ | dot_precision@10 | 0.072 | 0.236 | 0.08 |
482
+ | dot_recall@1 | 0.32 | 0.0191 | 0.46 |
483
+ | dot_recall@3 | 0.48 | 0.0491 | 0.64 |
484
+ | dot_recall@5 | 0.56 | 0.0667 | 0.67 |
485
+ | dot_recall@10 | 0.72 | 0.0893 | 0.73 |
486
+ | **dot_ndcg@10** | **0.498** | **0.27** | **0.6094** |
487
+ | dot_mrr@10 | 0.4297 | 0.3939 | 0.5884 |
488
+ | dot_map@100 | 0.441 | 0.1121 | 0.5709 |
489
+
490
+ #### Sparse Nano BEIR
491
+
492
+ * Dataset: `NanoBEIR_mean`
493
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
494
+ ```json
495
+ {
496
+ "dataset_names": [
497
+ "msmarco",
498
+ "nfcorpus",
499
+ "nq"
500
+ ]
501
+ }
502
+ ```
503
+
504
+ | Metric | Value |
505
+ |:-----------------|:-----------|
506
+ | dot_accuracy@1 | 0.3733 |
507
+ | dot_accuracy@3 | 0.5267 |
508
+ | dot_accuracy@5 | 0.5867 |
509
+ | dot_accuracy@10 | 0.6867 |
510
+ | dot_precision@1 | 0.3733 |
511
+ | dot_precision@3 | 0.2244 |
512
+ | dot_precision@5 | 0.18 |
513
+ | dot_precision@10 | 0.1293 |
514
+ | dot_recall@1 | 0.2664 |
515
+ | dot_recall@3 | 0.3897 |
516
+ | dot_recall@5 | 0.4322 |
517
+ | dot_recall@10 | 0.5131 |
518
+ | **dot_ndcg@10** | **0.4591** |
519
+ | dot_mrr@10 | 0.4707 |
520
+ | dot_map@100 | 0.3747 |
521
+
522
+ <!--
523
+ ## Bias, Risks and Limitations
524
+
525
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
526
+ -->
527
+
528
+ <!--
529
+ ### Recommendations
530
+
531
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
532
+ -->
533
+
534
+ ## Training Details
535
+
536
+ ### Training Dataset
537
+
538
+ #### natural-questions
539
+
540
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
541
+ * Size: 99,000 training samples
542
+ * Columns: <code>query</code> and <code>answer</code>
543
+ * Approximate statistics based on the first 1000 samples:
544
+ | | query | answer |
545
+ |:--------|:-----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
546
+ | type | string | string |
547
+ | details | <ul><li>min: 29 characters</li><li>mean: 46.96 characters</li><li>max: 93 characters</li></ul> | <ul><li>min: 10 characters</li><li>mean: 582.13 characters</li><li>max: 2141 characters</li></ul> |
548
+ * Samples:
549
+ | query | answer |
550
+ |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
551
+ | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> |
552
+ | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
553
+ | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> |
554
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
555
+ ```json
556
+ {'loss': SparseMultipleNegativesRankingLoss(
557
+ (model): SparseEncoder(
558
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
559
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
560
+ )
561
+ (cross_entropy_loss): CrossEntropyLoss()
562
+ ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss(
563
+ (model): SparseEncoder(
564
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
565
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
566
+ )
567
+ ), 'query_regularizer': FlopsLoss(
568
+ (model): SparseEncoder(
569
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
570
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
571
+ )
572
+ )}
573
+ ```
574
+
575
+ ### Evaluation Dataset
576
+
577
+ #### natural-questions
578
+
579
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
580
+ * Size: 1,000 evaluation samples
581
+ * Columns: <code>query</code> and <code>answer</code>
582
+ * Approximate statistics based on the first 1000 samples:
583
+ | | query | answer |
584
+ |:--------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
585
+ | type | string | string |
586
+ | details | <ul><li>min: 30 characters</li><li>mean: 47.2 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 58 characters</li><li>mean: 598.96 characters</li><li>max: 2480 characters</li></ul> |
587
+ * Samples:
588
+ | query | answer |
589
+ |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
590
+ | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
591
+ | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> |
592
+ | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> |
593
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
594
+ ```json
595
+ {'loss': SparseMultipleNegativesRankingLoss(
596
+ (model): SparseEncoder(
597
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
598
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
599
+ )
600
+ (cross_entropy_loss): CrossEntropyLoss()
601
+ ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss(
602
+ (model): SparseEncoder(
603
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
604
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
605
+ )
606
+ ), 'query_regularizer': FlopsLoss(
607
+ (model): SparseEncoder(
608
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
609
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
610
+ )
611
+ )}
612
+ ```
613
+
614
+ ### Training Hyperparameters
615
+ #### Non-Default Hyperparameters
616
+
617
+ - `eval_strategy`: steps
618
+ - `per_device_train_batch_size`: 16
619
+ - `per_device_eval_batch_size`: 16
620
+ - `learning_rate`: 2e-05
621
+ - `num_train_epochs`: 1
622
+ - `warmup_ratio`: 0.1
623
+ - `fp16`: True
624
+ - `batch_sampler`: no_duplicates
625
+
626
+ #### All Hyperparameters
627
+ <details><summary>Click to expand</summary>
628
+
629
+ - `overwrite_output_dir`: False
630
+ - `do_predict`: False
631
+ - `eval_strategy`: steps
632
+ - `prediction_loss_only`: True
633
+ - `per_device_train_batch_size`: 16
634
+ - `per_device_eval_batch_size`: 16
635
+ - `per_gpu_train_batch_size`: None
636
+ - `per_gpu_eval_batch_size`: None
637
+ - `gradient_accumulation_steps`: 1
638
+ - `eval_accumulation_steps`: None
639
+ - `torch_empty_cache_steps`: None
640
+ - `learning_rate`: 2e-05
641
+ - `weight_decay`: 0.0
642
+ - `adam_beta1`: 0.9
643
+ - `adam_beta2`: 0.999
644
+ - `adam_epsilon`: 1e-08
645
+ - `max_grad_norm`: 1.0
646
+ - `num_train_epochs`: 1
647
+ - `max_steps`: -1
648
+ - `lr_scheduler_type`: linear
649
+ - `lr_scheduler_kwargs`: {}
650
+ - `warmup_ratio`: 0.1
651
+ - `warmup_steps`: 0
652
+ - `log_level`: passive
653
+ - `log_level_replica`: warning
654
+ - `log_on_each_node`: True
655
+ - `logging_nan_inf_filter`: True
656
+ - `save_safetensors`: True
657
+ - `save_on_each_node`: False
658
+ - `save_only_model`: False
659
+ - `restore_callback_states_from_checkpoint`: False
660
+ - `no_cuda`: False
661
+ - `use_cpu`: False
662
+ - `use_mps_device`: False
663
+ - `seed`: 42
664
+ - `data_seed`: None
665
+ - `jit_mode_eval`: False
666
+ - `use_ipex`: False
667
+ - `bf16`: False
668
+ - `fp16`: True
669
+ - `fp16_opt_level`: O1
670
+ - `half_precision_backend`: auto
671
+ - `bf16_full_eval`: False
672
+ - `fp16_full_eval`: False
673
+ - `tf32`: None
674
+ - `local_rank`: 0
675
+ - `ddp_backend`: None
676
+ - `tpu_num_cores`: None
677
+ - `tpu_metrics_debug`: False
678
+ - `debug`: []
679
+ - `dataloader_drop_last`: False
680
+ - `dataloader_num_workers`: 0
681
+ - `dataloader_prefetch_factor`: None
682
+ - `past_index`: -1
683
+ - `disable_tqdm`: False
684
+ - `remove_unused_columns`: True
685
+ - `label_names`: None
686
+ - `load_best_model_at_end`: False
687
+ - `ignore_data_skip`: False
688
+ - `fsdp`: []
689
+ - `fsdp_min_num_params`: 0
690
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
691
+ - `tp_size`: 0
692
+ - `fsdp_transformer_layer_cls_to_wrap`: None
693
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
694
+ - `deepspeed`: None
695
+ - `label_smoothing_factor`: 0.0
696
+ - `optim`: adamw_torch
697
+ - `optim_args`: None
698
+ - `adafactor`: False
699
+ - `group_by_length`: False
700
+ - `length_column_name`: length
701
+ - `ddp_find_unused_parameters`: None
702
+ - `ddp_bucket_cap_mb`: None
703
+ - `ddp_broadcast_buffers`: False
704
+ - `dataloader_pin_memory`: True
705
+ - `dataloader_persistent_workers`: False
706
+ - `skip_memory_metrics`: True
707
+ - `use_legacy_prediction_loop`: False
708
+ - `push_to_hub`: False
709
+ - `resume_from_checkpoint`: None
710
+ - `hub_model_id`: None
711
+ - `hub_strategy`: every_save
712
+ - `hub_private_repo`: None
713
+ - `hub_always_push`: False
714
+ - `gradient_checkpointing`: False
715
+ - `gradient_checkpointing_kwargs`: None
716
+ - `include_inputs_for_metrics`: False
717
+ - `include_for_metrics`: []
718
+ - `eval_do_concat_batches`: True
719
+ - `fp16_backend`: auto
720
+ - `push_to_hub_model_id`: None
721
+ - `push_to_hub_organization`: None
722
+ - `mp_parameters`:
723
+ - `auto_find_batch_size`: False
724
+ - `full_determinism`: False
725
+ - `torchdynamo`: None
726
+ - `ray_scope`: last
727
+ - `ddp_timeout`: 1800
728
+ - `torch_compile`: False
729
+ - `torch_compile_backend`: None
730
+ - `torch_compile_mode`: None
731
+ - `include_tokens_per_second`: False
732
+ - `include_num_input_tokens_seen`: False
733
+ - `neftune_noise_alpha`: None
734
+ - `optim_target_modules`: None
735
+ - `batch_eval_metrics`: False
736
+ - `eval_on_start`: False
737
+ - `use_liger_kernel`: False
738
+ - `eval_use_gather_object`: False
739
+ - `average_tokens_across_devices`: False
740
+ - `prompts`: None
741
+ - `batch_sampler`: no_duplicates
742
+ - `multi_dataset_batch_sampler`: proportional
743
+
744
+ </details>
745
+
746
+ ### Training Logs
747
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
748
+ |:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|
749
+ | 0.0162 | 100 | 153.0226 | - | - | - | - | - |
750
+ | 0.0323 | 200 | 13.1878 | - | - | - | - | - |
751
+ | 0.0485 | 300 | 2.103 | - | - | - | - | - |
752
+ | 0.0646 | 400 | 0.3687 | - | - | - | - | - |
753
+ | 0.0808 | 500 | 0.2077 | - | - | - | - | - |
754
+ | 0.0970 | 600 | 0.0595 | - | - | - | - | - |
755
+ | 0.1131 | 700 | 0.0715 | - | - | - | - | - |
756
+ | 0.1293 | 800 | 0.112 | - | - | - | - | - |
757
+ | 0.1454 | 900 | 0.0362 | - | - | - | - | - |
758
+ | 0.1616 | 1000 | 0.0442 | 0.0489 | 0.4540 | 0.2450 | 0.4984 | 0.3991 |
759
+ | 0.1778 | 1100 | 0.0321 | - | - | - | - | - |
760
+ | 0.1939 | 1200 | 0.0307 | - | - | - | - | - |
761
+ | 0.2101 | 1300 | 0.0443 | - | - | - | - | - |
762
+ | 0.2262 | 1400 | 0.0381 | - | - | - | - | - |
763
+ | 0.2424 | 1500 | 0.0302 | - | - | - | - | - |
764
+ | 0.2586 | 1600 | 0.0267 | - | - | - | - | - |
765
+ | 0.2747 | 1700 | 0.0541 | - | - | - | - | - |
766
+ | 0.2909 | 1800 | 0.0472 | - | - | - | - | - |
767
+ | 0.3070 | 1900 | 0.027 | - | - | - | - | - |
768
+ | 0.3232 | 2000 | 0.0615 | 0.0393 | 0.4904 | 0.2834 | 0.5711 | 0.4483 |
769
+ | 0.3394 | 2100 | 0.0183 | - | - | - | - | - |
770
+ | 0.3555 | 2200 | 0.0312 | - | - | - | - | - |
771
+ | 0.3717 | 2300 | 0.0196 | - | - | - | - | - |
772
+ | 0.3878 | 2400 | 0.0451 | - | - | - | - | - |
773
+ | 0.4040 | 2500 | 0.036 | - | - | - | - | - |
774
+ | 0.4202 | 2600 | 0.0487 | - | - | - | - | - |
775
+ | 0.4363 | 2700 | 0.0195 | - | - | - | - | - |
776
+ | 0.4525 | 2800 | 0.0452 | - | - | - | - | - |
777
+ | 0.4686 | 2900 | 0.0227 | - | - | - | - | - |
778
+ | 0.4848 | 3000 | 0.0154 | 0.0369 | 0.4398 | 0.2864 | 0.6094 | 0.4452 |
779
+ | 0.5010 | 3100 | 0.0183 | - | - | - | - | - |
780
+ | 0.5171 | 3200 | 0.0072 | - | - | - | - | - |
781
+ | 0.5333 | 3300 | 0.0262 | - | - | - | - | - |
782
+ | 0.5495 | 3400 | 0.0202 | - | - | - | - | - |
783
+ | 0.5656 | 3500 | 0.0392 | - | - | - | - | - |
784
+ | 0.5818 | 3600 | 0.015 | - | - | - | - | - |
785
+ | 0.5979 | 3700 | 0.0146 | - | - | - | - | - |
786
+ | 0.6141 | 3800 | 0.0172 | - | - | - | - | - |
787
+ | 0.6303 | 3900 | 0.0361 | - | - | - | - | - |
788
+ | 0.6464 | 4000 | 0.0163 | 0.0293 | 0.4673 | 0.2867 | 0.6111 | 0.4551 |
789
+ | 0.6626 | 4100 | 0.019 | - | - | - | - | - |
790
+ | 0.6787 | 4200 | 0.0196 | - | - | - | - | - |
791
+ | 0.6949 | 4300 | 0.0286 | - | - | - | - | - |
792
+ | 0.7111 | 4400 | 0.0391 | - | - | - | - | - |
793
+ | 0.7272 | 4500 | 0.0253 | - | - | - | - | - |
794
+ | 0.7434 | 4600 | 0.0155 | - | - | - | - | - |
795
+ | 0.7595 | 4700 | 0.0367 | - | - | - | - | - |
796
+ | 0.7757 | 4800 | 0.0213 | - | - | - | - | - |
797
+ | 0.7919 | 4900 | 0.0155 | - | - | - | - | - |
798
+ | 0.8080 | 5000 | 0.0242 | 0.0279 | 0.4984 | 0.2568 | 0.5949 | 0.4500 |
799
+ | 0.8242 | 5100 | 0.011 | - | - | - | - | - |
800
+ | 0.8403 | 5200 | 0.0145 | - | - | - | - | - |
801
+ | 0.8565 | 5300 | 0.0086 | - | - | - | - | - |
802
+ | 0.8727 | 5400 | 0.0254 | - | - | - | - | - |
803
+ | 0.8888 | 5500 | 0.0137 | - | - | - | - | - |
804
+ | 0.9050 | 5600 | 0.0117 | - | - | - | - | - |
805
+ | 0.9211 | 5700 | 0.0171 | - | - | - | - | - |
806
+ | 0.9373 | 5800 | 0.0192 | - | - | - | - | - |
807
+ | 0.9535 | 5900 | 0.0203 | - | - | - | - | - |
808
+ | 0.9696 | 6000 | 0.0239 | 0.0245 | 0.4987 | 0.2674 | 0.6058 | 0.4573 |
809
+ | 0.9858 | 6100 | 0.0233 | - | - | - | - | - |
810
+ | -1 | -1 | - | - | 0.4980 | 0.2700 | 0.6094 | 0.4591 |
811
+
812
+
813
+ ### Environmental Impact
814
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
815
+ - **Energy Consumed**: 0.100 kWh
816
+ - **Carbon Emitted**: 0.039 kg of CO2
817
+ - **Hours Used**: 0.285 hours
818
+
819
+ ### Training Hardware
820
+ - **On Cloud**: No
821
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
822
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
823
+ - **RAM Size**: 31.78 GB
824
+
825
+ ### Framework Versions
826
+ - Python: 3.11.6
827
+ - Sentence Transformers: 4.2.0.dev0
828
+ - Transformers: 4.51.3
829
+ - PyTorch: 2.6.0+cu124
830
+ - Accelerate: 1.5.1
831
+ - Datasets: 2.21.0
832
+ - Tokenizers: 0.21.1
833
+
834
+ ## Citation
835
+
836
+ ### BibTeX
837
+
838
+ #### Sentence Transformers
839
+ ```bibtex
840
+ @inproceedings{reimers-2019-sentence-bert,
841
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
842
+ author = "Reimers, Nils and Gurevych, Iryna",
843
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
844
+ month = "11",
845
+ year = "2019",
846
+ publisher = "Association for Computational Linguistics",
847
+ url = "https://arxiv.org/abs/1908.10084",
848
+ }
849
+ ```
850
+
851
+ #### SpladeLoss
852
+ ```bibtex
853
+ @misc{formal2022distillationhardnegativesampling,
854
+ title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
855
+ author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
856
+ year={2022},
857
+ eprint={2205.04733},
858
+ archivePrefix={arXiv},
859
+ primaryClass={cs.IR},
860
+ url={https://arxiv.org/abs/2205.04733},
861
+ }
862
+ ```
863
+
864
+ <!--
865
+ ## Glossary
866
+
867
+ *Clearly define terms in order to be accessible across audiences.*
868
+ -->
869
+
870
+ <!--
871
+ ## Model Card Authors
872
+
873
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
874
+ -->
875
+
876
+ <!--
877
+ ## Model Card Contact
878
+
879
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
880
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation": "gelu",
3
+ "architectures": [
4
+ "DistilBertForMaskedLM"
5
+ ],
6
+ "attention_dropout": 0.1,
7
+ "dim": 768,
8
+ "dropout": 0.1,
9
+ "hidden_dim": 3072,
10
+ "initializer_range": 0.02,
11
+ "max_position_embeddings": 512,
12
+ "model_type": "distilbert",
13
+ "n_heads": 12,
14
+ "n_layers": 6,
15
+ "pad_token_id": 0,
16
+ "qa_dropout": 0.1,
17
+ "seq_classif_dropout": 0.2,
18
+ "sinusoidal_pos_embds": false,
19
+ "tie_weights_": true,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.3",
22
+ "vocab_size": 30522
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SparseEncoder",
3
+ "__version__": {
4
+ "sentence_transformers": "4.2.0.dev0",
5
+ "transformers": "4.51.3",
6
+ "pytorch": "2.6.0+cu124"
7
+ },
8
+ "prompts": {},
9
+ "default_prompt_name": null,
10
+ "similarity_fn_name": "dot"
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d8c7f205b279aacc1c0614b5829dcc24803e3fd01dafb2f25ca756469b6ddf7
3
+ size 267954768
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_SpladePooling",
12
+ "type": "sentence_transformers.sparse_encoder.models.SpladePooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "DistilBertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff