Update raven_modeling_minimal.py
Browse files- raven_modeling_minimal.py +116 -37
raven_modeling_minimal.py
CHANGED
@@ -11,7 +11,7 @@ from .raven_config_minimal import RavenConfig
|
|
11 |
from transformers.cache_utils import Cache, DynamicCache
|
12 |
|
13 |
###################### Huggingface Glue code I ##################################################################
|
14 |
-
from transformers import PreTrainedModel
|
15 |
from transformers.utils import ModelOutput
|
16 |
from transformers.generation.utils import GenerateDecoderOnlyOutput
|
17 |
|
@@ -32,7 +32,8 @@ class RavenPreTrainedModel(PreTrainedModel):
|
|
32 |
_supports_static_cache = False
|
33 |
|
34 |
def _init_weights(self, module):
|
35 |
-
|
|
|
36 |
|
37 |
|
38 |
@dataclass
|
@@ -70,7 +71,7 @@ class RMSNorm(torch.nn.Module):
|
|
70 |
|
71 |
|
72 |
class HuginnDynamicCache(DynamicCache):
|
73 |
-
def __init__(self, lookup_strategy: str = "
|
74 |
super().__init__()
|
75 |
self._seen_tokens = 0
|
76 |
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
|
@@ -89,6 +90,14 @@ class HuginnDynamicCache(DynamicCache):
|
|
89 |
lookup_strategy: Optional[str] = None,
|
90 |
) -> tuple[torch.Tensor, torch.Tensor]:
|
91 |
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# Init
|
93 |
if step_idx not in self.key_cache:
|
94 |
self.key_cache[step_idx] = {}
|
@@ -98,32 +107,49 @@ class HuginnDynamicCache(DynamicCache):
|
|
98 |
self._seen_tokens += key_states.shape[-2]
|
99 |
# Add entries to cache
|
100 |
for idx, entry in enumerate(key_states.unbind(dim=-2)):
|
101 |
-
|
|
|
102 |
# print(f"Overwrote cache entry for step_idx {step_idx}") # likely the head
|
103 |
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
104 |
for idx, entry in enumerate(value_states.unbind(dim=-2)):
|
105 |
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
|
106 |
|
107 |
# Materialize past state based on lookup strategy:
|
108 |
-
if len(self.key_cache[step_idx]) == self._seen_tokens:
|
109 |
# All entries are present, materialize cache as normal
|
110 |
return (
|
111 |
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
|
112 |
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
|
113 |
)
|
114 |
else: # some entries where not previously computed
|
115 |
-
if lookup_strategy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
latest_keys = []
|
117 |
latest_values = []
|
118 |
for token_pos in range(self._seen_tokens):
|
119 |
-
#
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
121 |
if max_step is None:
|
122 |
raise ValueError(f"No cache entry found for token position {token_pos}")
|
123 |
latest_keys.append(self.key_cache[max_step][token_pos])
|
124 |
latest_values.append(self.value_cache[max_step][token_pos])
|
125 |
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
126 |
-
elif lookup_strategy
|
127 |
existing_keys = []
|
128 |
existing_values = []
|
129 |
for token_pos in range(self._seen_tokens):
|
@@ -131,15 +157,22 @@ class HuginnDynamicCache(DynamicCache):
|
|
131 |
existing_keys.append(self.key_cache[step_idx][token_pos])
|
132 |
existing_values.append(self.value_cache[step_idx][token_pos])
|
133 |
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
|
134 |
-
elif lookup_strategy
|
135 |
rand_keys = []
|
136 |
rand_values = []
|
137 |
for token_pos in range(self._seen_tokens):
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
|
144 |
else:
|
145 |
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
@@ -153,6 +186,18 @@ class HuginnDynamicCache(DynamicCache):
|
|
153 |
def get_seq_length(self, step_idx: int = 0) -> int:
|
154 |
return self._seen_tokens
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
class CausalSelfAttention(torch.nn.Module):
|
158 |
def __init__(self, config: RavenConfig) -> None:
|
@@ -265,7 +310,7 @@ class SandwichBlock(torch.nn.Module):
|
|
265 |
return x, attn_map
|
266 |
|
267 |
|
268 |
-
class RavenForCausalLM(RavenPreTrainedModel):
|
269 |
def __init__(
|
270 |
self,
|
271 |
config: RavenConfig,
|
@@ -323,7 +368,7 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
323 |
"return_latents": True,
|
324 |
"return_attention": False,
|
325 |
"return_head": False,
|
326 |
-
"return_stats":
|
327 |
},
|
328 |
use_cache: bool = False,
|
329 |
cache_position: Optional[torch.Tensor] = None,
|
@@ -351,7 +396,7 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
351 |
# Non-recurrent prelude
|
352 |
for block_idx, block in enumerate(self.transformer.prelude):
|
353 |
input_embeds, attn_map = block(
|
354 |
-
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn
|
355 |
)
|
356 |
attn_maps[block_idx] = attn_map
|
357 |
|
@@ -365,12 +410,13 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
365 |
past_key_values,
|
366 |
num_steps,
|
367 |
attn_maps,
|
|
|
368 |
)
|
369 |
latent_states = x.clone().detach()
|
370 |
|
371 |
# Coda layers
|
372 |
for block_idx, block in enumerate(self.transformer.coda, start=1):
|
373 |
-
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values, return_attn)
|
374 |
attn_maps[-block_idx] = attn_map
|
375 |
x = self.transformer.ln_f(x)
|
376 |
|
@@ -407,6 +453,7 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
407 |
past_key_values: Optional[Cache] = None,
|
408 |
num_steps: Optional[torch.Tensor] = None,
|
409 |
attn_maps: dict = {},
|
|
|
410 |
):
|
411 |
x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
|
412 |
if num_steps is None:
|
@@ -424,13 +471,13 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
424 |
for step in range(num_steps_no_grad):
|
425 |
xk = x
|
426 |
x, block_idx, attn_maps = self.core_block_forward(
|
427 |
-
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps
|
428 |
)
|
429 |
|
430 |
for step in range(num_steps_with_grad):
|
431 |
xk = x
|
432 |
x, block_idx, attn_maps = self.core_block_forward(
|
433 |
-
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps
|
434 |
)
|
435 |
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx, attn_maps
|
436 |
|
@@ -443,10 +490,11 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
443 |
past_key_values,
|
444 |
block_idx: Union[torch.Tensor, int],
|
445 |
attn_maps: dict = {},
|
|
|
446 |
):
|
447 |
x = self.transformer.adapter(torch.cat([x, input_embeds], dim=-1))
|
448 |
for idx, block in enumerate(self.transformer.core_block, start=1):
|
449 |
-
x, attn_map = block(x, freqs_cis, block_idx + idx, mask, past_key_values, return_attn=
|
450 |
attn_maps[block_idx + idx] = attn_map
|
451 |
return x, block_idx + idx, attn_maps
|
452 |
|
@@ -579,7 +627,7 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
579 |
model_inputs["cache_position"] = cache_position
|
580 |
current_input_length = input_ids.shape[1]
|
581 |
if past_key_values is not None:
|
582 |
-
if type(past_key_values)
|
583 |
# Need to use custom cache, detect and replace HF dynamic cache if generate injects it
|
584 |
assert past_key_values.get_seq_length() == 0
|
585 |
past_key_values = HuginnDynamicCache()
|
@@ -599,6 +647,18 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
599 |
model_inputs[key] = value
|
600 |
return model_inputs
|
601 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
602 |
@torch.no_grad()
|
603 |
def generate_minimal(
|
604 |
self,
|
@@ -693,6 +753,7 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
693 |
continuous_compute=False, # warm-start state / continuous CoT
|
694 |
latent_dampening=False,
|
695 |
criterion="entropy-diff",
|
|
|
696 |
cache_kwargs: dict = {},
|
697 |
**model_kwargs,
|
698 |
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
|
@@ -725,46 +786,64 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
725 |
# Prep criterions:
|
726 |
if criterion == "entropy-diff":
|
727 |
entropy = torch.tensor(100.0, device=input_ids.device)
|
|
|
728 |
elif criterion in ["latent-diff", "none"]:
|
729 |
-
|
730 |
-
elif
|
731 |
V = self.config.padded_vocab_size
|
732 |
log_probs = (1 / V * torch.ones(V, device=input_ids.device)).log()
|
|
|
|
|
|
|
|
|
733 |
elif criterion == "argmax-stability":
|
734 |
stable_for_n_steps = 0
|
735 |
current_argmax = torch.tensor(-1, dtype=torch.long, device=input_ids.device)
|
|
|
736 |
else:
|
737 |
raise ValueError("Invalid adaptive compute strategy.")
|
738 |
|
739 |
all_latents = []
|
740 |
-
|
|
|
741 |
prev_latents = current_latents.clone()
|
742 |
current_latents, block_idx, _ = self.iterate_one_step(
|
743 |
embedded_inputs, current_latents, block_idx=block_idx, **aux_inputs
|
744 |
)
|
745 |
all_latents.append(current_latents if latent_dampening else None)
|
746 |
-
if
|
747 |
if criterion == "entropy-diff":
|
748 |
prev_entropy = entropy.clone()
|
749 |
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
750 |
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
751 |
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1).mean()
|
752 |
entropy_diff = (entropy - prev_entropy).abs()
|
753 |
-
|
754 |
-
|
755 |
break
|
756 |
elif criterion == "latent-diff":
|
757 |
-
norm_diff = (prev_latents - current_latents).norm()
|
758 |
-
|
759 |
-
|
760 |
break
|
761 |
elif criterion == "kl":
|
762 |
prev_log_probs = log_probs.clone()
|
763 |
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
764 |
log_probs = F.log_softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
765 |
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
766 |
-
|
767 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
768 |
break
|
769 |
elif criterion == "argmax-stability":
|
770 |
prev_argmax = current_argmax.clone()
|
@@ -774,19 +853,19 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
774 |
stable_for_n_steps += 1
|
775 |
else:
|
776 |
stable_for_n_steps = 0
|
777 |
-
|
778 |
-
|
779 |
break
|
780 |
elif criterion == "none":
|
781 |
pass
|
782 |
|
783 |
else:
|
784 |
-
compute_steps.append([compute_step, float("NaN")])
|
785 |
if not latent_dampening:
|
786 |
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
787 |
else:
|
788 |
dampened_latents = torch.sum(torch.cat(all_latents, dim=0), dim=0, keepdim=True)
|
789 |
outputs = self.predict_from_latents(dampened_latents, **aux_inputs)
|
|
|
790 |
|
791 |
next_token_logits = outputs.logits[0, -1, :] # type: ignore
|
792 |
if continuous_compute: # Save last latent
|
|
|
11 |
from transformers.cache_utils import Cache, DynamicCache
|
12 |
|
13 |
###################### Huggingface Glue code I ##################################################################
|
14 |
+
from transformers import PreTrainedModel, GenerationMixin
|
15 |
from transformers.utils import ModelOutput
|
16 |
from transformers.generation.utils import GenerateDecoderOnlyOutput
|
17 |
|
|
|
32 |
_supports_static_cache = False
|
33 |
|
34 |
def _init_weights(self, module):
|
35 |
+
if not torch.rand((1,)).is_meta:
|
36 |
+
print("Random Initialization not implemented.")
|
37 |
|
38 |
|
39 |
@dataclass
|
|
|
71 |
|
72 |
|
73 |
class HuginnDynamicCache(DynamicCache):
|
74 |
+
def __init__(self, lookup_strategy: str = "full") -> None:
|
75 |
super().__init__()
|
76 |
self._seen_tokens = 0
|
77 |
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
|
|
|
90 |
lookup_strategy: Optional[str] = None,
|
91 |
) -> tuple[torch.Tensor, torch.Tensor]:
|
92 |
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
|
93 |
+
if "compress-" in self.lookup_strategy and step_idx > 1: # hardcode for current model!
|
94 |
+
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
|
95 |
+
if "compress-s" in self.lookup_strategy:
|
96 |
+
new_step_idx = (step_idx - 2) % compression_stage + 2
|
97 |
+
else:
|
98 |
+
new_step_idx = (step_idx - 2) // compression_stage + 2
|
99 |
+
# @ print(step_idx, new_step_idx, compression_stage)
|
100 |
+
step_idx = new_step_idx
|
101 |
# Init
|
102 |
if step_idx not in self.key_cache:
|
103 |
self.key_cache[step_idx] = {}
|
|
|
107 |
self._seen_tokens += key_states.shape[-2]
|
108 |
# Add entries to cache
|
109 |
for idx, entry in enumerate(key_states.unbind(dim=-2)):
|
110 |
+
if "compress-" not in self.lookup_strategy:
|
111 |
+
assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
|
112 |
# print(f"Overwrote cache entry for step_idx {step_idx}") # likely the head
|
113 |
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
114 |
for idx, entry in enumerate(value_states.unbind(dim=-2)):
|
115 |
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
|
116 |
|
117 |
# Materialize past state based on lookup strategy:
|
118 |
+
if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
|
119 |
# All entries are present, materialize cache as normal
|
120 |
return (
|
121 |
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
|
122 |
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
|
123 |
)
|
124 |
else: # some entries where not previously computed
|
125 |
+
# if lookup_strategy.startswith("latest"):
|
126 |
+
# latest_keys = []
|
127 |
+
# latest_values = []
|
128 |
+
# for token_pos in range(self._seen_tokens):
|
129 |
+
# # Find the latest step that has this token position
|
130 |
+
# max_step = max((s for s in range(step_idx + 1) if token_pos in self.key_cache[s]), default=None)
|
131 |
+
# if max_step is None:
|
132 |
+
# raise ValueError(f"No cache entry found for token position {token_pos}")
|
133 |
+
# latest_keys.append(self.key_cache[max_step][token_pos])
|
134 |
+
# latest_values.append(self.value_cache[max_step][token_pos])
|
135 |
+
# return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
136 |
+
if lookup_strategy.startswith("latest-m4"):
|
137 |
latest_keys = []
|
138 |
latest_values = []
|
139 |
for token_pos in range(self._seen_tokens):
|
140 |
+
# For steps >= 2, use modulo 4
|
141 |
+
if step_idx >= 2:
|
142 |
+
# Find valid steps for this token position
|
143 |
+
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
|
144 |
+
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
|
145 |
+
else:
|
146 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
147 |
if max_step is None:
|
148 |
raise ValueError(f"No cache entry found for token position {token_pos}")
|
149 |
latest_keys.append(self.key_cache[max_step][token_pos])
|
150 |
latest_values.append(self.value_cache[max_step][token_pos])
|
151 |
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
152 |
+
elif lookup_strategy.startswith("skip"):
|
153 |
existing_keys = []
|
154 |
existing_values = []
|
155 |
for token_pos in range(self._seen_tokens):
|
|
|
157 |
existing_keys.append(self.key_cache[step_idx][token_pos])
|
158 |
existing_values.append(self.value_cache[step_idx][token_pos])
|
159 |
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
|
160 |
+
elif lookup_strategy.startswith("randomized"): # sanity check
|
161 |
rand_keys = []
|
162 |
rand_values = []
|
163 |
for token_pos in range(self._seen_tokens):
|
164 |
+
if step_idx < 2: # For prelude steps
|
165 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
166 |
+
else: # Get all steps from same block position
|
167 |
+
curr_modulo = (step_idx - 2) % 4 + 2
|
168 |
+
valid_steps = [
|
169 |
+
s
|
170 |
+
for s in range(2, step_idx + 1)
|
171 |
+
if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
|
172 |
+
]
|
173 |
+
max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
|
174 |
+
rand_keys.append(self.key_cache[max_step][token_pos])
|
175 |
+
rand_values.append(self.value_cache[max_step][token_pos])
|
176 |
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
|
177 |
else:
|
178 |
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
|
|
186 |
def get_seq_length(self, step_idx: int = 0) -> int:
|
187 |
return self._seen_tokens
|
188 |
|
189 |
+
def get_memory_usage(self) -> float:
|
190 |
+
total_bytes = 0
|
191 |
+
# For each recurrent step/layer index
|
192 |
+
for step_idx in self.key_cache:
|
193 |
+
# Get the sequence cache for this step
|
194 |
+
key_seq_cache = self.key_cache[step_idx]
|
195 |
+
for seq_idx in key_seq_cache:
|
196 |
+
key_tensor = key_seq_cache[seq_idx]
|
197 |
+
# Add memory for of key tensors, assuming value is the same
|
198 |
+
total_bytes += key_tensor.nelement() * key_tensor.element_size()
|
199 |
+
return total_bytes * 2 / (1024 * 1024)
|
200 |
+
|
201 |
|
202 |
class CausalSelfAttention(torch.nn.Module):
|
203 |
def __init__(self, config: RavenConfig) -> None:
|
|
|
310 |
return x, attn_map
|
311 |
|
312 |
|
313 |
+
class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
314 |
def __init__(
|
315 |
self,
|
316 |
config: RavenConfig,
|
|
|
368 |
"return_latents": True,
|
369 |
"return_attention": False,
|
370 |
"return_head": False,
|
371 |
+
"return_stats": False,
|
372 |
},
|
373 |
use_cache: bool = False,
|
374 |
cache_position: Optional[torch.Tensor] = None,
|
|
|
396 |
# Non-recurrent prelude
|
397 |
for block_idx, block in enumerate(self.transformer.prelude):
|
398 |
input_embeds, attn_map = block(
|
399 |
+
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn=return_attn
|
400 |
)
|
401 |
attn_maps[block_idx] = attn_map
|
402 |
|
|
|
410 |
past_key_values,
|
411 |
num_steps,
|
412 |
attn_maps,
|
413 |
+
return_attn=return_attn,
|
414 |
)
|
415 |
latent_states = x.clone().detach()
|
416 |
|
417 |
# Coda layers
|
418 |
for block_idx, block in enumerate(self.transformer.coda, start=1):
|
419 |
+
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values, return_attn=return_attn)
|
420 |
attn_maps[-block_idx] = attn_map
|
421 |
x = self.transformer.ln_f(x)
|
422 |
|
|
|
453 |
past_key_values: Optional[Cache] = None,
|
454 |
num_steps: Optional[torch.Tensor] = None,
|
455 |
attn_maps: dict = {},
|
456 |
+
return_attn: bool = False,
|
457 |
):
|
458 |
x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
|
459 |
if num_steps is None:
|
|
|
471 |
for step in range(num_steps_no_grad):
|
472 |
xk = x
|
473 |
x, block_idx, attn_maps = self.core_block_forward(
|
474 |
+
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps, return_attn
|
475 |
)
|
476 |
|
477 |
for step in range(num_steps_with_grad):
|
478 |
xk = x
|
479 |
x, block_idx, attn_maps = self.core_block_forward(
|
480 |
+
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps, return_attn
|
481 |
)
|
482 |
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx, attn_maps
|
483 |
|
|
|
490 |
past_key_values,
|
491 |
block_idx: Union[torch.Tensor, int],
|
492 |
attn_maps: dict = {},
|
493 |
+
return_attn: bool = False,
|
494 |
):
|
495 |
x = self.transformer.adapter(torch.cat([x, input_embeds], dim=-1))
|
496 |
for idx, block in enumerate(self.transformer.core_block, start=1):
|
497 |
+
x, attn_map = block(x, freqs_cis, block_idx + idx, mask, past_key_values, return_attn=return_attn)
|
498 |
attn_maps[block_idx + idx] = attn_map
|
499 |
return x, block_idx + idx, attn_maps
|
500 |
|
|
|
627 |
model_inputs["cache_position"] = cache_position
|
628 |
current_input_length = input_ids.shape[1]
|
629 |
if past_key_values is not None:
|
630 |
+
if type(past_key_values) != HuginnDynamicCache:
|
631 |
# Need to use custom cache, detect and replace HF dynamic cache if generate injects it
|
632 |
assert past_key_values.get_seq_length() == 0
|
633 |
past_key_values = HuginnDynamicCache()
|
|
|
647 |
model_inputs[key] = value
|
648 |
return model_inputs
|
649 |
|
650 |
+
@torch.no_grad()
|
651 |
+
def generate(self, *args, **kwargs):
|
652 |
+
"""Dispatcher - use HF generate in all normal cases."""
|
653 |
+
if any(
|
654 |
+
k in kwargs
|
655 |
+
for k in ("continuous_compute", "latent_dampening", "criterion", "exit_threshold", "cache_kwargs")
|
656 |
+
):
|
657 |
+
print("Dispatching to custom generate function call")
|
658 |
+
return self.generate_with_adaptive_compute(*args, **kwargs)
|
659 |
+
else:
|
660 |
+
return super().generate(*args, **kwargs)
|
661 |
+
|
662 |
@torch.no_grad()
|
663 |
def generate_minimal(
|
664 |
self,
|
|
|
753 |
continuous_compute=False, # warm-start state / continuous CoT
|
754 |
latent_dampening=False,
|
755 |
criterion="entropy-diff",
|
756 |
+
exit_threshold: Union[str, float, int] = "auto",
|
757 |
cache_kwargs: dict = {},
|
758 |
**model_kwargs,
|
759 |
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
|
|
|
786 |
# Prep criterions:
|
787 |
if criterion == "entropy-diff":
|
788 |
entropy = torch.tensor(100.0, device=input_ids.device)
|
789 |
+
exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
|
790 |
elif criterion in ["latent-diff", "none"]:
|
791 |
+
exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
|
792 |
+
elif "kl" in criterion:
|
793 |
V = self.config.padded_vocab_size
|
794 |
log_probs = (1 / V * torch.ones(V, device=input_ids.device)).log()
|
795 |
+
if criterion == "minp-kl":
|
796 |
+
exit_threshold = 1e-6 if exit_threshold == "auto" else float(exit_threshold)
|
797 |
+
else:
|
798 |
+
exit_threshold = 5e-4 if exit_threshold == "auto" else float(exit_threshold)
|
799 |
elif criterion == "argmax-stability":
|
800 |
stable_for_n_steps = 0
|
801 |
current_argmax = torch.tensor(-1, dtype=torch.long, device=input_ids.device)
|
802 |
+
exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
|
803 |
else:
|
804 |
raise ValueError("Invalid adaptive compute strategy.")
|
805 |
|
806 |
all_latents = []
|
807 |
+
exit_values = []
|
808 |
+
for compute_step in range(model_inputs["num_steps"]):
|
809 |
prev_latents = current_latents.clone()
|
810 |
current_latents, block_idx, _ = self.iterate_one_step(
|
811 |
embedded_inputs, current_latents, block_idx=block_idx, **aux_inputs
|
812 |
)
|
813 |
all_latents.append(current_latents if latent_dampening else None)
|
814 |
+
if step > 0: # do not exit in prefill:
|
815 |
if criterion == "entropy-diff":
|
816 |
prev_entropy = entropy.clone()
|
817 |
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
818 |
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
819 |
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1).mean()
|
820 |
entropy_diff = (entropy - prev_entropy).abs()
|
821 |
+
exit_values.append(entropy_diff.item())
|
822 |
+
if entropy_diff < exit_threshold:
|
823 |
break
|
824 |
elif criterion == "latent-diff":
|
825 |
+
norm_diff = (prev_latents - current_latents).norm() / current_latents.norm()
|
826 |
+
exit_values.append(norm_diff.item())
|
827 |
+
if norm_diff < exit_threshold:
|
828 |
break
|
829 |
elif criterion == "kl":
|
830 |
prev_log_probs = log_probs.clone()
|
831 |
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
832 |
log_probs = F.log_softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
833 |
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
834 |
+
exit_values.append(kl.item())
|
835 |
+
if kl < exit_threshold:
|
836 |
+
break
|
837 |
+
elif criterion == "minp-kl":
|
838 |
+
prev_log_probs = log_probs.clone()
|
839 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
840 |
+
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
841 |
+
probs[probs < 0.1 * probs.max()] = 1 / V
|
842 |
+
probs = probs / probs.sum()
|
843 |
+
log_probs = probs.log()
|
844 |
+
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
845 |
+
exit_values.append(kl.item())
|
846 |
+
if kl < exit_threshold:
|
847 |
break
|
848 |
elif criterion == "argmax-stability":
|
849 |
prev_argmax = current_argmax.clone()
|
|
|
853 |
stable_for_n_steps += 1
|
854 |
else:
|
855 |
stable_for_n_steps = 0
|
856 |
+
exit_values.append(stable_for_n_steps)
|
857 |
+
if stable_for_n_steps >= exit_threshold:
|
858 |
break
|
859 |
elif criterion == "none":
|
860 |
pass
|
861 |
|
862 |
else:
|
|
|
863 |
if not latent_dampening:
|
864 |
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
865 |
else:
|
866 |
dampened_latents = torch.sum(torch.cat(all_latents, dim=0), dim=0, keepdim=True)
|
867 |
outputs = self.predict_from_latents(dampened_latents, **aux_inputs)
|
868 |
+
compute_steps.append([compute_step + 1, exit_values])
|
869 |
|
870 |
next_token_logits = outputs.logits[0, -1, :] # type: ignore
|
871 |
if continuous_compute: # Save last latent
|