Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .ruff_cache/.gitignore +2 -0
- .ruff_cache/0.12.8/5591301162804142724 +0 -0
- .ruff_cache/CACHEDIR.TAG +1 -0
- README.md +75 -0
- config.json +30 -0
- custom_generate/generate.py +608 -0
- generation_config.json +13 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.ruff_cache/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# Automatically created by ruff.
|
2 |
+
*
|
.ruff_cache/0.12.8/5591301162804142724
ADDED
Binary file (154 Bytes). View file
|
|
.ruff_cache/CACHEDIR.TAG
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Signature: 8a477f597d28d172789f06886806bc55
|
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
|
3 |
+
library_name: transformers
|
4 |
+
tags:
|
5 |
+
- custom_generate
|
6 |
+
---
|
7 |
+
|
8 |
+
## Description
|
9 |
+
Implementation of [Contrastive Search](https://huggingface.co/blog/introducing-csearch), a decoding strategy that jointly optimizes model confidence and a degeneration penalty to produce fluent, coherent, and low-repetition text. At each step, the model considers the top-k candidate tokens and selects the one maximizing:
|
10 |
+
|
11 |
+
score(v) = (1 - alpha) * p(v | context) - alpha * max_cosine_similarity(h_v, H_context)
|
12 |
+
|
13 |
+
where `alpha` is the trade-off between confidence and the cosine-similarity-based penalty.
|
14 |
+
|
15 |
+
This strategy typically:
|
16 |
+
|
17 |
+
- Reduces repetition compared to greedy/beam search
|
18 |
+
- Preserves semantic coherence better than pure sampling
|
19 |
+
|
20 |
+
---
|
21 |
+
|
22 |
+
## Base model
|
23 |
+
|
24 |
+
- `Qwen/Qwen2.5-0.5B-Instruct` (example)
|
25 |
+
|
26 |
+
---
|
27 |
+
|
28 |
+
## Model compatibility
|
29 |
+
|
30 |
+
- Decoder-only transformer models for causal LM
|
31 |
+
|
32 |
+
---
|
33 |
+
|
34 |
+
## Additional Arguments
|
35 |
+
|
36 |
+
- `top_k` (int): Number of candidate tokens to consider each step (e.g., 4)
|
37 |
+
- `penalty_alpha` (float): Weight of the degeneration penalty (e.g., 0.6)
|
38 |
+
|
39 |
+
Tips:
|
40 |
+
- Larger `top_k` explores more candidates but increases compute
|
41 |
+
- `penalty_alpha` in [0.3, 0.8] often works well; `0.0` reduces to greedy
|
42 |
+
|
43 |
+
---
|
44 |
+
|
45 |
+
## Output Type changes
|
46 |
+
|
47 |
+
(none) — returns the same structure as standard `transformers` generation
|
48 |
+
|
49 |
+
---
|
50 |
+
|
51 |
+
## Example usage
|
52 |
+
|
53 |
+
```py
|
54 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
|
55 |
+
|
56 |
+
device = infer_device()
|
57 |
+
|
58 |
+
model_id = "Qwen/Qwen2.5-0.5B-Instruct"
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto").to(device)
|
61 |
+
|
62 |
+
inputs = tokenizer(["DeepMind Company is"], return_tensors="pt").to(device)
|
63 |
+
|
64 |
+
# Contrastive search
|
65 |
+
gen_out = model.generate(
|
66 |
+
**inputs,
|
67 |
+
custom_generate="contrastive_search",
|
68 |
+
penalty_alpha=0.6,
|
69 |
+
top_k=4,
|
70 |
+
max_new_tokens=128,
|
71 |
+
trust_remote_code=True,
|
72 |
+
)
|
73 |
+
|
74 |
+
print(tokenizer.batch_decode(gen_out, skip_special_tokens=True))
|
75 |
+
```
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"max_position_embeddings": 40960,
|
15 |
+
"max_window_layers": 28,
|
16 |
+
"model_type": "qwen3",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 28,
|
19 |
+
"num_key_value_heads": 8,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 1000000,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": true,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.56.0",
|
27 |
+
"use_cache": true,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151936
|
30 |
+
}
|
custom_generate/generate.py
ADDED
@@ -0,0 +1,608 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union, Optional, TYPE_CHECKING
|
2 |
+
import torch
|
3 |
+
from transformers import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
|
4 |
+
from transformers.generation.utils import (
|
5 |
+
GenerateNonBeamOutput,
|
6 |
+
GenerateDecoderOnlyOutput,
|
7 |
+
)
|
8 |
+
from transformers.cache_utils import Cache, EncoderDecoderCache, DynamicCache
|
9 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
|
10 |
+
from transformers.generation.utils import GenerateEncoderDecoderOutput, ALL_CACHE_NAMES
|
11 |
+
from transformers.utils import ModelOutput
|
12 |
+
from transformers.configuration_utils import PretrainedConfig
|
13 |
+
import torch.nn as nn
|
14 |
+
import logging
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from transformers.generation.streamers import BaseStreamer
|
18 |
+
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
def stack_model_outputs(
|
23 |
+
model_outputs: list[ModelOutput], config: PretrainedConfig
|
24 |
+
) -> ModelOutput:
|
25 |
+
"""
|
26 |
+
Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
|
27 |
+
specific ModelOutput subclass from the list provided.
|
28 |
+
"""
|
29 |
+
if not model_outputs:
|
30 |
+
raise ValueError("Input list is empty.")
|
31 |
+
|
32 |
+
# Infer the class from the first object in the list
|
33 |
+
model_output_cls = type(model_outputs[0])
|
34 |
+
|
35 |
+
# Ensure all objects are of the same type
|
36 |
+
if not all(isinstance(obj, model_output_cls) for obj in model_outputs):
|
37 |
+
raise ValueError("All elements in the list should be of the same type.")
|
38 |
+
|
39 |
+
# Helper function to concat tensors or tuples of tensors
|
40 |
+
def _concat(data):
|
41 |
+
"""
|
42 |
+
Reverse of `_split` function above.
|
43 |
+
"""
|
44 |
+
if any(data is None for data in data):
|
45 |
+
return None
|
46 |
+
if isinstance(data[0], torch.Tensor):
|
47 |
+
return torch.cat(data, dim=0)
|
48 |
+
elif isinstance(data[0], tuple):
|
49 |
+
# If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
|
50 |
+
if isinstance(data[0][0], tuple):
|
51 |
+
return tuple(
|
52 |
+
tuple(
|
53 |
+
torch.cat([attr[i][j] for attr in data], dim=0)
|
54 |
+
for j in range(len(data[0][0]))
|
55 |
+
)
|
56 |
+
for i in range(len(data[0]))
|
57 |
+
)
|
58 |
+
else:
|
59 |
+
return tuple(
|
60 |
+
torch.cat([attr[i] for attr in data], dim=0)
|
61 |
+
for i in range(len(data[0]))
|
62 |
+
)
|
63 |
+
elif isinstance(data[0], (int, float)):
|
64 |
+
# If the elements are integers or floats, return a tensor
|
65 |
+
return torch.tensor(data)
|
66 |
+
else:
|
67 |
+
raise TypeError(f"Unexpected attribute type: {type(data[0])}")
|
68 |
+
|
69 |
+
# Use a dictionary comprehension to gather attributes from all objects and concatenate them
|
70 |
+
concatenated_data = {
|
71 |
+
k: _concat([getattr(model_output, k) for model_output in model_outputs])
|
72 |
+
for k in model_output_cls.__dataclass_fields__
|
73 |
+
}
|
74 |
+
|
75 |
+
# Return a new object of the inferred class with the concatenated attributes
|
76 |
+
return model_output_cls(**concatenated_data)
|
77 |
+
|
78 |
+
|
79 |
+
def _ranking_fast(
|
80 |
+
context_hidden: torch.FloatTensor,
|
81 |
+
next_hidden: torch.FloatTensor,
|
82 |
+
next_top_k_probs: torch.FloatTensor,
|
83 |
+
cosine_matrix_mask: torch.LongTensor,
|
84 |
+
alpha: float,
|
85 |
+
beam_width: int,
|
86 |
+
) -> torch.FloatTensor:
|
87 |
+
"""
|
88 |
+
Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
|
89 |
+
in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
|
90 |
+
row in the batch.
|
91 |
+
"""
|
92 |
+
norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
|
93 |
+
norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
|
94 |
+
cosine_matrix = torch.matmul(
|
95 |
+
norm_context_hidden, norm_next_hidden.transpose(1, 2)
|
96 |
+
).squeeze(-1) # [B*K, S]
|
97 |
+
|
98 |
+
# Penalize cosine_matrix based on the cosine_matrix_mask (ignore padding positions)
|
99 |
+
# Using a large negative value for masked positions
|
100 |
+
cosine_matrix_mask = cosine_matrix_mask.to(dtype=cosine_matrix.dtype)
|
101 |
+
cosine_matrix_mask = (1 - cosine_matrix_mask) * torch.finfo(cosine_matrix.dtype).min
|
102 |
+
cosine_matrix = cosine_matrix + cosine_matrix_mask
|
103 |
+
|
104 |
+
degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1) # [B*K]
|
105 |
+
next_top_k_probs = next_top_k_probs.view(-1) # [B*K]
|
106 |
+
contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
|
107 |
+
contrastive_score = torch.stack(
|
108 |
+
torch.split(contrastive_score, beam_width)
|
109 |
+
) # [B, K]
|
110 |
+
_, selected_idx = contrastive_score.max(dim=-1) # [B]
|
111 |
+
return selected_idx
|
112 |
+
|
113 |
+
|
114 |
+
@torch.no_grad()
|
115 |
+
def _contrastive_search(
|
116 |
+
model,
|
117 |
+
input_ids: torch.LongTensor,
|
118 |
+
logits_processor: LogitsProcessorList,
|
119 |
+
stopping_criteria: StoppingCriteriaList,
|
120 |
+
generation_config: GenerationConfig,
|
121 |
+
synced_gpus: bool,
|
122 |
+
streamer: Optional["BaseStreamer"],
|
123 |
+
**model_kwargs,
|
124 |
+
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
|
125 |
+
r"""
|
126 |
+
Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
|
127 |
+
be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
|
128 |
+
|
129 |
+
Parameters:
|
130 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
131 |
+
The sequence used as a prompt for the generation.
|
132 |
+
logits_processor (`LogitsProcessorList`):
|
133 |
+
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
|
134 |
+
used to modify the prediction scores of the language modeling head applied at each generation step.
|
135 |
+
stopping_criteria (`StoppingCriteriaList`):
|
136 |
+
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
|
137 |
+
used to tell if the generation loop should stop.
|
138 |
+
generation_config ([`~generation.GenerationConfig`]):
|
139 |
+
The generation configuration to be used as parametrization of the decoding method.
|
140 |
+
synced_gpus (`bool`):
|
141 |
+
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
|
142 |
+
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
|
143 |
+
streamer (`BaseStreamer`, *optional*):
|
144 |
+
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
|
145 |
+
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
|
146 |
+
model_kwargs:
|
147 |
+
Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
|
148 |
+
If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
|
149 |
+
|
150 |
+
Return:
|
151 |
+
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`]
|
152 |
+
or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
|
153 |
+
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
|
154 |
+
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
|
155 |
+
`model.config.is_encoder_decoder=True`.
|
156 |
+
"""
|
157 |
+
if not model_kwargs["use_cache"]:
|
158 |
+
raise ValueError("Contrastive search requires `use_cache=True`")
|
159 |
+
if model._is_stateful:
|
160 |
+
# Just like assisted generation, we need to be able to rollback to a previous state (see comment above)
|
161 |
+
raise ValueError(
|
162 |
+
f"contrastive search is not supported with stateful models, such as {model.__class__.__name__}"
|
163 |
+
)
|
164 |
+
# init values
|
165 |
+
has_eos_stopping_criteria = any(
|
166 |
+
hasattr(criteria, "eos_token_id") for criteria in stopping_criteria
|
167 |
+
)
|
168 |
+
top_k = generation_config.top_k
|
169 |
+
penalty_alpha = generation_config.penalty_alpha
|
170 |
+
pad_token_id = generation_config._pad_token_tensor
|
171 |
+
output_attentions = generation_config.output_attentions
|
172 |
+
output_hidden_states = generation_config.output_hidden_states
|
173 |
+
output_scores = generation_config.output_scores
|
174 |
+
output_logits = generation_config.output_logits
|
175 |
+
return_dict_in_generate = generation_config.return_dict_in_generate
|
176 |
+
sequential = generation_config.low_memory
|
177 |
+
|
178 |
+
# init attention / hidden states / scores tuples
|
179 |
+
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
180 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
181 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
182 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
183 |
+
decoder_hidden_states = (
|
184 |
+
() if (return_dict_in_generate and output_hidden_states) else None
|
185 |
+
)
|
186 |
+
|
187 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
188 |
+
if return_dict_in_generate and model.config.is_encoder_decoder:
|
189 |
+
encoder_attentions = (
|
190 |
+
model_kwargs["encoder_outputs"].get("attentions")
|
191 |
+
if output_attentions
|
192 |
+
else None
|
193 |
+
)
|
194 |
+
encoder_hidden_states = (
|
195 |
+
model_kwargs["encoder_outputs"].get("hidden_states")
|
196 |
+
if output_hidden_states
|
197 |
+
else None
|
198 |
+
)
|
199 |
+
|
200 |
+
# keep track of which sequences are already finished
|
201 |
+
batch_size, cur_len = input_ids.shape[:2]
|
202 |
+
unfinished_sequences = torch.ones(
|
203 |
+
batch_size, dtype=torch.long, device=input_ids.device
|
204 |
+
)
|
205 |
+
model_kwargs = model._get_initial_cache_position(
|
206 |
+
cur_len, input_ids.device, model_kwargs
|
207 |
+
)
|
208 |
+
|
209 |
+
# Create cosine_matrix_mask based on the attention_mask
|
210 |
+
cosine_matrix_mask = torch.ones_like(input_ids, dtype=torch.long)
|
211 |
+
if model.config.is_encoder_decoder:
|
212 |
+
if (
|
213 |
+
"decoder_attention_mask" in model_kwargs
|
214 |
+
and model_kwargs["decoder_attention_mask"] is not None
|
215 |
+
):
|
216 |
+
cosine_matrix_mask = model_kwargs["decoder_attention_mask"]
|
217 |
+
else:
|
218 |
+
cosine_matrix_mask = model_kwargs["attention_mask"]
|
219 |
+
cosine_matrix_mask = cosine_matrix_mask.repeat_interleave(top_k, dim=0)
|
220 |
+
|
221 |
+
this_peer_finished = False
|
222 |
+
|
223 |
+
while model._has_unfinished_sequences(
|
224 |
+
this_peer_finished, synced_gpus, device=input_ids.device
|
225 |
+
):
|
226 |
+
# if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
|
227 |
+
# (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
|
228 |
+
if model_kwargs.get("past_key_values") is None or (
|
229 |
+
isinstance(model_kwargs["past_key_values"], (Cache, EncoderDecoderCache))
|
230 |
+
and model_kwargs["past_key_values"].get_seq_length() == 0
|
231 |
+
):
|
232 |
+
# prepare inputs
|
233 |
+
model_kwargs["use_cache"] = True
|
234 |
+
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
235 |
+
|
236 |
+
# encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
|
237 |
+
# the `encoder_outputs`
|
238 |
+
outputs = model(
|
239 |
+
**model_inputs,
|
240 |
+
return_dict=True,
|
241 |
+
output_hidden_states=True,
|
242 |
+
output_attentions=output_attentions,
|
243 |
+
)
|
244 |
+
|
245 |
+
# last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
|
246 |
+
# previous tokens)
|
247 |
+
if model.config.is_encoder_decoder:
|
248 |
+
last_hidden_states = outputs.decoder_hidden_states[-1]
|
249 |
+
else:
|
250 |
+
last_hidden_states = outputs.hidden_states[-1]
|
251 |
+
|
252 |
+
# next logit for contrastive search to select top-k candidate tokens
|
253 |
+
# Copy is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration
|
254 |
+
# (the clone itmodel is always small)
|
255 |
+
# torch.float32 is needed to retain precision for later logits manipulations
|
256 |
+
logit_for_next_step = outputs.logits[:, -1, :].to(
|
257 |
+
copy=True, dtype=torch.float32, device=input_ids.device
|
258 |
+
)
|
259 |
+
|
260 |
+
model_kwargs = model._update_model_kwargs_for_generation(
|
261 |
+
outputs,
|
262 |
+
model_kwargs,
|
263 |
+
is_encoder_decoder=model.config.is_encoder_decoder,
|
264 |
+
)
|
265 |
+
|
266 |
+
if not sequential:
|
267 |
+
# Expands model inputs top_k times, for batched forward passes (akin to beam search).
|
268 |
+
# input_ids is required for expanding visual inputs in qwen2vl
|
269 |
+
_, model_kwargs = model._expand_inputs_for_generation(
|
270 |
+
input_ids=input_ids,
|
271 |
+
expand_size=top_k,
|
272 |
+
is_encoder_decoder=model.config.is_encoder_decoder,
|
273 |
+
**model_kwargs,
|
274 |
+
)
|
275 |
+
|
276 |
+
past_key_values = model_kwargs.get("past_key_values")
|
277 |
+
if past_key_values is None:
|
278 |
+
raise ValueError(
|
279 |
+
f"{model.__class__.__name__} does not support caching and therefore **can't** be used "
|
280 |
+
"for contrastive search."
|
281 |
+
)
|
282 |
+
elif (
|
283 |
+
not isinstance(past_key_values[0], (tuple, torch.Tensor))
|
284 |
+
or past_key_values[0][0].shape[0] != batch_size
|
285 |
+
):
|
286 |
+
raise ValueError(
|
287 |
+
f"{model.__class__.__name__} does not have a standard cache format and therefore **can't** be "
|
288 |
+
"used for contrastive search without further modifications."
|
289 |
+
)
|
290 |
+
|
291 |
+
# contrastive_search main logic start:
|
292 |
+
# contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
|
293 |
+
# degeneration penalty
|
294 |
+
processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step)
|
295 |
+
next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1)
|
296 |
+
|
297 |
+
top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)
|
298 |
+
|
299 |
+
# Store scores, attentions and hidden_states when required
|
300 |
+
if return_dict_in_generate:
|
301 |
+
if output_logits:
|
302 |
+
raw_logits += (logit_for_next_step,)
|
303 |
+
if output_scores:
|
304 |
+
scores += (processed_logit_for_next_step,)
|
305 |
+
if output_attentions:
|
306 |
+
decoder_attentions += (
|
307 |
+
(outputs.decoder_attentions,)
|
308 |
+
if model.config.is_encoder_decoder
|
309 |
+
else (outputs.attentions,)
|
310 |
+
)
|
311 |
+
if model.config.is_encoder_decoder:
|
312 |
+
cross_attentions += (outputs.cross_attentions,)
|
313 |
+
|
314 |
+
if output_hidden_states:
|
315 |
+
decoder_hidden_states += (
|
316 |
+
(outputs.decoder_hidden_states,)
|
317 |
+
if model.config.is_encoder_decoder
|
318 |
+
else (outputs.hidden_states,)
|
319 |
+
)
|
320 |
+
|
321 |
+
# This is needed to properly delete outputs.logits which may be very large for this first iteration
|
322 |
+
# Otherwise a reference to outputs.logits is kept all along until after the next call to model.forward()
|
323 |
+
del outputs
|
324 |
+
|
325 |
+
if not sequential:
|
326 |
+
# Replicates the new past_key_values to match the `top_k` candidates
|
327 |
+
past = model_kwargs["past_key_values"]
|
328 |
+
# If it is a static cache, modify it in-place layer after layer to save memory
|
329 |
+
if isinstance(past, DynamicCache) or (
|
330 |
+
isinstance(past, EncoderDecoderCache)
|
331 |
+
and isinstance(past.model_attention_cache, DynamicCache)
|
332 |
+
):
|
333 |
+
past.batch_repeat_interleave(top_k)
|
334 |
+
else:
|
335 |
+
new_key_values = []
|
336 |
+
for layer in past:
|
337 |
+
items = []
|
338 |
+
# item is either the key or the value matrix
|
339 |
+
for item in layer:
|
340 |
+
items.append(item.repeat_interleave(top_k, dim=0))
|
341 |
+
new_key_values.append(tuple(items))
|
342 |
+
|
343 |
+
past = tuple(new_key_values)
|
344 |
+
|
345 |
+
model_kwargs["past_key_values"] = past
|
346 |
+
|
347 |
+
if sequential:
|
348 |
+
all_outputs = []
|
349 |
+
for i in range(top_k):
|
350 |
+
# compute the candidate tokens by the language model and collect their hidden_states
|
351 |
+
next_model_inputs = model.prepare_inputs_for_generation(
|
352 |
+
top_k_ids[:, i].view(-1, 1), **model_kwargs
|
353 |
+
)
|
354 |
+
|
355 |
+
outputs = model(
|
356 |
+
**next_model_inputs,
|
357 |
+
return_dict=True,
|
358 |
+
output_hidden_states=True,
|
359 |
+
output_attentions=output_attentions,
|
360 |
+
)
|
361 |
+
if isinstance(outputs["past_key_values"], DynamicCache) or (
|
362 |
+
isinstance(outputs["past_key_values"], EncoderDecoderCache)
|
363 |
+
and isinstance(
|
364 |
+
outputs["past_key_values"].model_attention_cache, DynamicCache
|
365 |
+
)
|
366 |
+
):
|
367 |
+
# Remove past K-V from output since we don't need to stack later
|
368 |
+
outputs["past_key_values"] = None
|
369 |
+
# Remove last token from past K-V since we don't want to append it at this point
|
370 |
+
model_kwargs["past_key_values"].crop(-1)
|
371 |
+
|
372 |
+
all_outputs.append(outputs)
|
373 |
+
outputs = stack_model_outputs(all_outputs, model.config.get_text_config())
|
374 |
+
|
375 |
+
else:
|
376 |
+
# compute the candidate tokens by the language model and collect their hidden_states
|
377 |
+
# assembles top_k_ids into batch of size k
|
378 |
+
next_model_inputs = model.prepare_inputs_for_generation(
|
379 |
+
top_k_ids.view(-1, 1), **model_kwargs
|
380 |
+
)
|
381 |
+
|
382 |
+
outputs = model(
|
383 |
+
**next_model_inputs,
|
384 |
+
return_dict=True,
|
385 |
+
output_hidden_states=True,
|
386 |
+
output_attentions=output_attentions,
|
387 |
+
)
|
388 |
+
|
389 |
+
# This is essential to avoid having a last reference to the big past K-V and double the necessary memory
|
390 |
+
# in the next loop
|
391 |
+
del next_model_inputs
|
392 |
+
|
393 |
+
# name is different for encoder-decoder and decoder-only models
|
394 |
+
if model.config.is_encoder_decoder:
|
395 |
+
next_hidden = outputs.decoder_hidden_states[-1]
|
396 |
+
full_hidden_states = outputs.decoder_hidden_states
|
397 |
+
else:
|
398 |
+
next_hidden = outputs.hidden_states[-1]
|
399 |
+
full_hidden_states = outputs.hidden_states
|
400 |
+
|
401 |
+
# .float() is needed to retain precision for later logits manipulations
|
402 |
+
logits = outputs.logits[:, -1, :].float()
|
403 |
+
context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)
|
404 |
+
|
405 |
+
# compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
|
406 |
+
# model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't
|
407 |
+
# introduce (noticeable) slowdowns on single-device runs.
|
408 |
+
selected_idx = _ranking_fast(
|
409 |
+
context_hidden,
|
410 |
+
next_hidden,
|
411 |
+
top_k_probs,
|
412 |
+
cosine_matrix_mask,
|
413 |
+
penalty_alpha,
|
414 |
+
top_k,
|
415 |
+
)
|
416 |
+
cosine_matrix_mask = torch.cat(
|
417 |
+
[
|
418 |
+
cosine_matrix_mask,
|
419 |
+
cosine_matrix_mask.new_ones((cosine_matrix_mask.shape[0], 1)),
|
420 |
+
],
|
421 |
+
dim=-1,
|
422 |
+
)
|
423 |
+
selected_idx = selected_idx.to("cpu")
|
424 |
+
|
425 |
+
# This will be used instead of the previous inneficient torch.stack(torch.split())
|
426 |
+
augmented_idx = torch.tensor(
|
427 |
+
[x + i * top_k for i, x in enumerate(selected_idx)]
|
428 |
+
)
|
429 |
+
|
430 |
+
# prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
|
431 |
+
# the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
|
432 |
+
# (model confidence minus degeneration penalty); (6) decoder hidden_states
|
433 |
+
next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
|
434 |
+
next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
|
435 |
+
next_hidden = next_hidden[range(batch_size), selected_idx, :]
|
436 |
+
last_hidden_states = torch.cat(
|
437 |
+
[last_hidden_states, next_hidden.unsqueeze(1)], dim=1
|
438 |
+
)
|
439 |
+
|
440 |
+
next_decoder_hidden_states = ()
|
441 |
+
for layer in full_hidden_states:
|
442 |
+
layer = torch.stack(torch.split(layer, top_k))[
|
443 |
+
range(batch_size), selected_idx, :
|
444 |
+
]
|
445 |
+
next_decoder_hidden_states += (layer,)
|
446 |
+
|
447 |
+
# generate past_key_values cache of only the selected token
|
448 |
+
if sequential:
|
449 |
+
next_model_input = model.prepare_inputs_for_generation(
|
450 |
+
top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs
|
451 |
+
)
|
452 |
+
|
453 |
+
selected_outputs = model(
|
454 |
+
**next_model_input,
|
455 |
+
return_dict=True,
|
456 |
+
output_hidden_states=False,
|
457 |
+
output_attentions=False,
|
458 |
+
)
|
459 |
+
next_past_key_values = selected_outputs["past_key_values"]
|
460 |
+
|
461 |
+
else:
|
462 |
+
next_past_key_values = None
|
463 |
+
for possible_cache_name in ALL_CACHE_NAMES:
|
464 |
+
next_past_key_values = next_past_key_values or getattr(
|
465 |
+
outputs, possible_cache_name, None
|
466 |
+
)
|
467 |
+
# Do it in-place layer per layer to save memory
|
468 |
+
if isinstance(next_past_key_values, DynamicCache) or (
|
469 |
+
isinstance(next_past_key_values, EncoderDecoderCache)
|
470 |
+
and isinstance(next_past_key_values.model_attention_cache, DynamicCache)
|
471 |
+
):
|
472 |
+
next_past_key_values.batch_select_indices(augmented_idx)
|
473 |
+
else:
|
474 |
+
new_key_values = []
|
475 |
+
for layer in next_past_key_values:
|
476 |
+
items = []
|
477 |
+
# item is either the key or the value matrix
|
478 |
+
for item in layer:
|
479 |
+
items.append(item[augmented_idx, ...])
|
480 |
+
new_key_values.append(tuple(items))
|
481 |
+
|
482 |
+
next_past_key_values = tuple(new_key_values)
|
483 |
+
|
484 |
+
logit_for_next_step = torch.stack(torch.split(logits, top_k))[
|
485 |
+
range(batch_size), selected_idx, :
|
486 |
+
]
|
487 |
+
logit_for_next_step = logit_for_next_step.to(input_ids.device)
|
488 |
+
|
489 |
+
# Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
|
490 |
+
if model.config.is_encoder_decoder:
|
491 |
+
next_step_cross_attentions = ()
|
492 |
+
next_step_decoder_attentions = ()
|
493 |
+
if output_attentions:
|
494 |
+
for layer in outputs.cross_attentions:
|
495 |
+
layer = torch.stack(torch.split(layer, top_k, dim=0))[
|
496 |
+
range(batch_size), selected_idx, ...
|
497 |
+
]
|
498 |
+
next_step_cross_attentions += (layer,)
|
499 |
+
for layer in outputs.decoder_attentions:
|
500 |
+
layer = torch.stack(torch.split(layer, top_k, dim=0))[
|
501 |
+
range(batch_size), selected_idx, ...
|
502 |
+
]
|
503 |
+
next_step_decoder_attentions += (layer,)
|
504 |
+
outputs = Seq2SeqLMOutput(
|
505 |
+
past_key_values=next_past_key_values,
|
506 |
+
decoder_hidden_states=next_decoder_hidden_states,
|
507 |
+
decoder_attentions=next_step_decoder_attentions or None,
|
508 |
+
cross_attentions=next_step_cross_attentions or None,
|
509 |
+
)
|
510 |
+
else:
|
511 |
+
next_step_attentions = ()
|
512 |
+
if output_attentions:
|
513 |
+
for layer in outputs.attentions:
|
514 |
+
layer = torch.stack(torch.split(layer, top_k, dim=0))[
|
515 |
+
range(batch_size), selected_idx, ...
|
516 |
+
]
|
517 |
+
next_step_attentions += (layer,)
|
518 |
+
outputs = CausalLMOutputWithPast(
|
519 |
+
past_key_values=next_past_key_values,
|
520 |
+
hidden_states=next_decoder_hidden_states,
|
521 |
+
attentions=next_step_attentions or None,
|
522 |
+
)
|
523 |
+
# contrastive_search main logic end
|
524 |
+
|
525 |
+
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
|
526 |
+
model_kwargs = model._update_model_kwargs_for_generation(
|
527 |
+
outputs,
|
528 |
+
model_kwargs,
|
529 |
+
is_encoder_decoder=model.config.is_encoder_decoder,
|
530 |
+
)
|
531 |
+
if synced_gpus and this_peer_finished:
|
532 |
+
continue
|
533 |
+
|
534 |
+
# finished sentences should have their next token be a padding token
|
535 |
+
if has_eos_stopping_criteria:
|
536 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
|
537 |
+
1 - unfinished_sequences
|
538 |
+
)
|
539 |
+
|
540 |
+
# update generated ids, model inputs, and length for next step
|
541 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
542 |
+
if streamer is not None:
|
543 |
+
streamer.put(next_tokens.cpu())
|
544 |
+
|
545 |
+
# stop when each sentence is finished
|
546 |
+
unfinished_sequences = unfinished_sequences & ~stopping_criteria(
|
547 |
+
input_ids, scores
|
548 |
+
)
|
549 |
+
this_peer_finished = unfinished_sequences.max() == 0
|
550 |
+
|
551 |
+
if streamer is not None:
|
552 |
+
streamer.end()
|
553 |
+
|
554 |
+
if return_dict_in_generate:
|
555 |
+
# Contrastive search works by forward looking at the next token, so we need to exclude it from
|
556 |
+
# `past_key_values` to be consistent with the other decoding methods
|
557 |
+
if model_kwargs.get("past_key_values") is not None:
|
558 |
+
if isinstance(model_kwargs["past_key_values"], DynamicCache) or (
|
559 |
+
isinstance(model_kwargs["past_key_values"], EncoderDecoderCache)
|
560 |
+
and isinstance(
|
561 |
+
model_kwargs["past_key_values"].model_attention_cache, DynamicCache
|
562 |
+
)
|
563 |
+
):
|
564 |
+
model_kwargs["past_key_values"].crop(-1)
|
565 |
+
else:
|
566 |
+
past_key_values = []
|
567 |
+
for layer in model_kwargs["past_key_values"]:
|
568 |
+
layer_past_key_values = []
|
569 |
+
for item in layer:
|
570 |
+
layer_past_key_values.append(item[..., :-1, :])
|
571 |
+
past_key_values.append(tuple(layer_past_key_values))
|
572 |
+
model_kwargs["past_key_values"] = tuple(past_key_values)
|
573 |
+
|
574 |
+
if model.config.is_encoder_decoder:
|
575 |
+
return GenerateEncoderDecoderOutput(
|
576 |
+
sequences=input_ids,
|
577 |
+
scores=scores,
|
578 |
+
logits=raw_logits,
|
579 |
+
encoder_attentions=encoder_attentions,
|
580 |
+
encoder_hidden_states=encoder_hidden_states,
|
581 |
+
decoder_attentions=decoder_attentions,
|
582 |
+
cross_attentions=cross_attentions,
|
583 |
+
decoder_hidden_states=decoder_hidden_states,
|
584 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
585 |
+
)
|
586 |
+
else:
|
587 |
+
return GenerateDecoderOnlyOutput(
|
588 |
+
sequences=input_ids,
|
589 |
+
scores=scores,
|
590 |
+
logits=raw_logits,
|
591 |
+
attentions=decoder_attentions,
|
592 |
+
hidden_states=decoder_hidden_states,
|
593 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
594 |
+
)
|
595 |
+
else:
|
596 |
+
return input_ids
|
597 |
+
|
598 |
+
|
599 |
+
def generate(model, *args, **kwargs):
|
600 |
+
"""Custom generate function for Contrastive Search decoding.
|
601 |
+
Args:
|
602 |
+
model (`PreTrainedModel`):
|
603 |
+
The model to generate from.
|
604 |
+
penalty_alpha (`float`): The alpha value for the degeneration penalty.
|
605 |
+
top_k (`int`): The number of candidates to consider at each step.
|
606 |
+
"""
|
607 |
+
generation_outputs = model.generate(*args, custom_generate=_contrastive_search, **kwargs)
|
608 |
+
return generation_outputs
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"temperature": 0.6,
|
10 |
+
"top_k": 20,
|
11 |
+
"top_p": 0.95,
|
12 |
+
"transformers_version": "4.56.0"
|
13 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f47f71177f32bcd101b7573ec9171e6a57f4f4d31148d38e382306f42996874b
|
3 |
+
size 1503300328
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
231 |
+
"clean_up_tokenization_spaces": false,
|
232 |
+
"eos_token": "<|im_end|>",
|
233 |
+
"errors": "replace",
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"split_special_tokens": false,
|
237 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
238 |
+
"unk_token": null
|
239 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|