File size: 3,423 Bytes
9d37948 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: llama2
base_model: epfl-llm/meditron-7b
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: 400STEPS_5e7rate_03beta_DPO_Meditron7B
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 400STEPS_5e7rate_03beta_DPO_Meditron7B
This model is a fine-tuned version of [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6439
- Rewards/chosen: -0.0166
- Rewards/rejected: -0.1472
- Rewards/accuracies: 0.5714
- Rewards/margins: 0.1306
- Logps/rejected: -28.2845
- Logps/chosen: -26.5367
- Logits/rejected: -0.6342
- Logits/chosen: -0.6341
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6896 | 0.1 | 50 | 0.6916 | 0.0067 | 0.0033 | 0.4637 | 0.0034 | -27.7828 | -26.4590 | -0.6113 | -0.6111 |
| 0.6783 | 0.2 | 100 | 0.6771 | -0.0693 | -0.1071 | 0.5319 | 0.0378 | -28.1508 | -26.7125 | -0.6173 | -0.6171 |
| 0.6697 | 0.29 | 150 | 0.6571 | -0.0107 | -0.1001 | 0.5626 | 0.0893 | -28.1273 | -26.5172 | -0.6171 | -0.6170 |
| 0.6463 | 0.39 | 200 | 0.6496 | 0.0037 | -0.1067 | 0.5692 | 0.1104 | -28.1493 | -26.4691 | -0.6288 | -0.6286 |
| 0.6124 | 0.49 | 250 | 0.6449 | -0.0073 | -0.1329 | 0.5648 | 0.1257 | -28.2368 | -26.5056 | -0.6318 | -0.6317 |
| 0.641 | 0.59 | 300 | 0.6440 | -0.0156 | -0.1460 | 0.5758 | 0.1304 | -28.2803 | -26.5333 | -0.6340 | -0.6339 |
| 0.643 | 0.68 | 350 | 0.6430 | -0.0150 | -0.1479 | 0.5780 | 0.1328 | -28.2866 | -26.5315 | -0.6343 | -0.6341 |
| 0.6632 | 0.78 | 400 | 0.6439 | -0.0166 | -0.1472 | 0.5714 | 0.1306 | -28.2845 | -26.5367 | -0.6342 | -0.6341 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.0.0+cu117
- Datasets 2.17.0
- Tokenizers 0.15.1
|