--- tags: - generated_from_trainer datasets: - null model-index: - name: wav2vec2-live-japanese results: - {} --- --- language: ja datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-live-japanese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice Japanese type: common_voice args: ja metrics: - name: Test WER type: wer value: 22.08% - name: Test CER type: cer value: 10.08% --- # wav2vec2-live-japanese https://github.com/ttop32/wav2vec2-live-japanese-translator Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the - common_voice - JSUT - CSS10 - TEDxJP-10K - JVS ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 3 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.1 - Datasets 1.11.0 - Tokenizers 0.10.3