Update README.md
Browse files
README.md
CHANGED
@@ -7,4 +7,144 @@ language:
|
|
7 |
---
|
8 |
|
9 |
LLaVA-Qwen1.5-1.8b model trained with LoRA, on a subset of Vista Vi LLaVA Complex Reasoning.
|
10 |
-
Loss: ~1.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
LLaVA-Qwen1.5-1.8b model trained with LoRA, on a subset of Vista Vi LLaVA Complex Reasoning.
|
10 |
+
Loss: ~1.5
|
11 |
+
|
12 |
+
Training script
|
13 |
+
```bash
|
14 |
+
deepspeed moellava/train/train_mem.py \
|
15 |
+
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 0.00000125 \
|
16 |
+
--lora_path /kaggle/temp/lora-llavaqwen \
|
17 |
+
--deepspeed ./scripts/zero3.json \
|
18 |
+
--model_name_or_path Qwen/Qwen1.5-1.8B \
|
19 |
+
--version qwen \
|
20 |
+
--data_path /kaggle/temp/vi_llava_train.json \
|
21 |
+
--image_folder /kaggle/input/coco-2017-dataset/coco2017/train2017 \
|
22 |
+
--image_tower google/siglip-base-patch16-256-multilingual \
|
23 |
+
--image_projector_type mlp2x_gelu \
|
24 |
+
--pretrain_mm_mlp_adapter /kaggle/temp/pt-llavaqwen1.5-1.8b/mm_projector.bin \
|
25 |
+
--mm_vision_select_layer -2 \
|
26 |
+
--mm_use_im_start_end False \
|
27 |
+
--mm_use_im_patch_token False \
|
28 |
+
--image_aspect_ratio pad \
|
29 |
+
--group_by_modality_length True \
|
30 |
+
--fp16 True \
|
31 |
+
--output_dir ./checkpoints/ft-lora-llavaqwen1.5-1.8b-complex_reasoning \
|
32 |
+
--num_train_epochs 1 \
|
33 |
+
--per_device_train_batch_size 2 \
|
34 |
+
--per_device_eval_batch_size 4 \
|
35 |
+
--gradient_accumulation_steps 8 \
|
36 |
+
--evaluation_strategy "no" \
|
37 |
+
--save_strategy "steps" \
|
38 |
+
--save_steps 100 \
|
39 |
+
--save_total_limit 1 \
|
40 |
+
--learning_rate 1e-5 \
|
41 |
+
--weight_decay 0. \
|
42 |
+
--warmup_ratio 0 \
|
43 |
+
--lr_scheduler_type "cosine" \
|
44 |
+
--logging_steps 5 \
|
45 |
+
--tf32 False \
|
46 |
+
--model_max_length 1024 \
|
47 |
+
--gradient_checkpointing True \
|
48 |
+
--dataloader_num_workers 4 \
|
49 |
+
--lazy_preprocess True \
|
50 |
+
--report_to wandb \
|
51 |
+
--run_name ft-llava-qwen1.5-1.8b-lora-vista_reasoning-cont \
|
52 |
+
--push_to_hub True
|
53 |
+
```
|
54 |
+
|
55 |
+
Python code to merge LoRA
|
56 |
+
```python
|
57 |
+
from typing import Optional, List
|
58 |
+
class ModelArguments:
|
59 |
+
model_name_or_path: Optional[str] = "facebook/opt-125m"
|
60 |
+
version: Optional[str] = "v0"
|
61 |
+
freeze_backbone: bool = False
|
62 |
+
tune_mm_mlp_adapter: bool = False
|
63 |
+
mm_vision_select_layer: Optional[int] = -1 # default to the last layer
|
64 |
+
pretrain_mm_mlp_adapter: Optional[str] = None
|
65 |
+
mm_use_im_start_end: bool = False
|
66 |
+
mm_use_im_patch_token: bool = True
|
67 |
+
mm_vision_select_feature: Optional[str] = "patch"
|
68 |
+
# ===================================================================
|
69 |
+
image_tower: Optional[str] = 'google/siglip-base-patch16-256-multilingual'
|
70 |
+
video_tower: Optional[str] = None
|
71 |
+
image_projector_type: Optional[str] = 'linear'
|
72 |
+
video_projector_type: Optional[str] = 'linear'
|
73 |
+
video_global_proj: bool = False
|
74 |
+
video_temproal_proj: bool = False
|
75 |
+
video_spatial_proj: bool = False
|
76 |
+
# ===================================================================
|
77 |
+
|
78 |
+
# =============================================================
|
79 |
+
only_lora_ffn: bool = True
|
80 |
+
moe_enable: bool = False
|
81 |
+
train_modules: Optional[List[str]] = None
|
82 |
+
moe_mode: str = "sparse"
|
83 |
+
moe_layers_idx: Optional[List[int]] = None
|
84 |
+
ep_size: int = 1
|
85 |
+
num_experts: Optional[List[int]] = 4
|
86 |
+
top_k_experts: int = 2
|
87 |
+
capacity_factor: float = 1.
|
88 |
+
eval_capacity_factor: float = 2.
|
89 |
+
min_capacity: int = 0
|
90 |
+
use_residual: bool = False
|
91 |
+
router_aux_loss_coef: float = 0.01
|
92 |
+
|
93 |
+
class DataArguments:
|
94 |
+
lazy_preprocess: bool = False
|
95 |
+
is_multimodal: bool = False
|
96 |
+
image_aspect_ratio: str = 'pad'
|
97 |
+
# ===================================================================
|
98 |
+
data_path: Optional[List[str]] = None
|
99 |
+
image_folder: Optional[str] = None
|
100 |
+
video_folder: Optional[str] = None
|
101 |
+
num_frames: int = 8
|
102 |
+
|
103 |
+
model_args = ModelArguments()
|
104 |
+
data_args = DataArguments()
|
105 |
+
|
106 |
+
import torch
|
107 |
+
from peft import PeftModel
|
108 |
+
from moellava.model import LlavaQwen1_5ForCausalLM
|
109 |
+
|
110 |
+
model_name_or_path = 'Qwen/Qwen1.5-1.8B'
|
111 |
+
lora_path = 'llavaqwen1.5-lora'
|
112 |
+
|
113 |
+
model = LlavaQwen1_5ForCausalLM.from_pretrained(
|
114 |
+
model_name_or_path,
|
115 |
+
)
|
116 |
+
|
117 |
+
model.to(torch.float16)
|
118 |
+
model = PeftModel.from_pretrained(model, lora_path)
|
119 |
+
model
|
120 |
+
|
121 |
+
import transformers
|
122 |
+
|
123 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
124 |
+
model_args.model_name_or_path,
|
125 |
+
model_max_length=1024,
|
126 |
+
padding_side="right",
|
127 |
+
use_fast=False,
|
128 |
+
)
|
129 |
+
tokenizer.add_special_tokens({'unk_token': '<|extra_0|>'})
|
130 |
+
|
131 |
+
model.get_model().initialize_vision_modules(
|
132 |
+
model_args=model_args,
|
133 |
+
)
|
134 |
+
|
135 |
+
image_tower = model.get_image_tower()
|
136 |
+
image_tower.to(dtype=torch.float16)
|
137 |
+
|
138 |
+
data_args.image_processor = image_tower.image_processor
|
139 |
+
data_args.is_multimodal = True
|
140 |
+
|
141 |
+
model.config.image_aspect_ratio = data_args.image_aspect_ratio
|
142 |
+
model.config.tokenizer_padding_side = tokenizer.padding_side
|
143 |
+
|
144 |
+
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
|
145 |
+
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token
|
146 |
+
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer)
|
147 |
+
|
148 |
+
merged_model = model.merge_and_unload()
|
149 |
+
merged_model.save_pretrained("llava-qwen1.5-1.8b-complex_reasoning-merged")
|
150 |
+
```
|