tuanio commited on
Commit
d485446
1 Parent(s): 00d2304

Model save

Browse files
Files changed (2) hide show
  1. README.md +107 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - wer
8
+ model-index:
9
+ - name: w2v2_ablation_200epoch-with_ling_head-0drop-0load_best-best_on_tp0.025_tl10_fp0.001_fl16
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # w2v2_ablation_200epoch-with_ling_head-0drop-0load_best-best_on_tp0.025_tl10_fp0.001_fl16
17
+
18
+ This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.5364
21
+ - Wer: 0.1808
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 32
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 4
46
+ - total_train_batch_size: 32
47
+ - total_eval_batch_size: 128
48
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
49
+ - lr_scheduler_type: cosine
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 200
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
57
+ |:-------------:|:------:|:-----:|:---------------:|:------:|
58
+ | 5.0922 | 4.72 | 500 | 5.2296 | 1.0 |
59
+ | 4.3263 | 9.43 | 1000 | 5.4260 | 1.0 |
60
+ | 1.9702 | 14.15 | 1500 | 1.6761 | 0.4369 |
61
+ | 0.7013 | 18.87 | 2000 | 0.6799 | 0.2360 |
62
+ | 0.4391 | 23.58 | 2500 | 0.5237 | 0.1964 |
63
+ | 0.3015 | 28.3 | 3000 | 0.4437 | 0.1849 |
64
+ | 0.2416 | 33.02 | 3500 | 0.4311 | 0.2081 |
65
+ | 0.2057 | 37.74 | 4000 | 0.4202 | 0.1697 |
66
+ | 0.1714 | 42.45 | 4500 | 0.4270 | 0.1738 |
67
+ | 0.1812 | 47.17 | 5000 | 0.4467 | 0.1600 |
68
+ | 0.1498 | 51.89 | 5500 | 0.4322 | 0.2197 |
69
+ | 0.1255 | 56.6 | 6000 | 0.4408 | 0.1696 |
70
+ | 0.1148 | 61.32 | 6500 | 0.4531 | 0.1765 |
71
+ | 0.1112 | 66.04 | 7000 | 0.4572 | 0.2148 |
72
+ | 0.1038 | 70.75 | 7500 | 0.4648 | 0.1894 |
73
+ | 0.0923 | 75.47 | 8000 | 0.4812 | 0.1558 |
74
+ | 0.086 | 80.19 | 8500 | 0.4882 | 0.1894 |
75
+ | 0.0872 | 84.91 | 9000 | 0.4662 | 0.1744 |
76
+ | 0.0778 | 89.62 | 9500 | 0.4800 | 0.1750 |
77
+ | 0.0709 | 94.34 | 10000 | 0.5077 | 0.1960 |
78
+ | 0.0703 | 99.06 | 10500 | 0.5038 | 0.1740 |
79
+ | 0.0721 | 103.77 | 11000 | 0.5131 | 0.1763 |
80
+ | 0.0717 | 108.49 | 11500 | 0.5091 | 0.1896 |
81
+ | 0.0818 | 113.21 | 12000 | 0.5173 | 0.1908 |
82
+ | 0.0626 | 117.92 | 12500 | 0.5158 | 0.1865 |
83
+ | 0.0749 | 122.64 | 13000 | 0.5208 | 0.1865 |
84
+ | 0.0592 | 127.36 | 13500 | 0.5244 | 0.1781 |
85
+ | 0.055 | 132.08 | 14000 | 0.5303 | 0.1810 |
86
+ | 0.0487 | 136.79 | 14500 | 0.5264 | 0.1739 |
87
+ | 0.0486 | 141.51 | 15000 | 0.5225 | 0.1814 |
88
+ | 0.0478 | 146.23 | 15500 | 0.5316 | 0.1870 |
89
+ | 0.0453 | 150.94 | 16000 | 0.5270 | 0.1776 |
90
+ | 0.0449 | 155.66 | 16500 | 0.5318 | 0.1821 |
91
+ | 0.0585 | 160.38 | 17000 | 0.5332 | 0.1775 |
92
+ | 0.0481 | 165.09 | 17500 | 0.5373 | 0.1784 |
93
+ | 0.0459 | 169.81 | 18000 | 0.5335 | 0.1756 |
94
+ | 0.0473 | 174.53 | 18500 | 0.5360 | 0.1808 |
95
+ | 0.0512 | 179.25 | 19000 | 0.5347 | 0.1791 |
96
+ | 0.046 | 183.96 | 19500 | 0.5367 | 0.1778 |
97
+ | 0.048 | 188.68 | 20000 | 0.5354 | 0.1783 |
98
+ | 0.0471 | 193.4 | 20500 | 0.5366 | 0.1814 |
99
+ | 0.0419 | 198.11 | 21000 | 0.5364 | 0.1808 |
100
+
101
+
102
+ ### Framework versions
103
+
104
+ - Transformers 4.35.2
105
+ - Pytorch 1.13.1+cu117
106
+ - Datasets 2.12.0
107
+ - Tokenizers 0.14.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:908e27c5acd1eecc8862cb228b0da002352f4824e5c17f2569e2613dadf387b0
3
  size 197617854
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5652ae2d91ad6f8b5850c9ab79ead527d59294d16080b09266358d925097136f
3
  size 197617854