Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,85 +1,84 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
-
|
| 10 |
-
-
|
| 11 |
-
-
|
| 12 |
-
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
- **Best
|
| 27 |
-
- **
|
| 28 |
-
- **
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
- **
|
| 35 |
-
- **
|
| 36 |
-
- **
|
| 37 |
-
-
|
| 38 |
-
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
- Fused features ->
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
- **Input
|
| 51 |
-
- **
|
| 52 |
-
- **
|
| 53 |
-
- **
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
- **
|
| 58 |
-
- **
|
| 59 |
-
- **Loss
|
| 60 |
-
- **
|
| 61 |
-
- **
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
model
|
| 71 |
-
model.
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
- **
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
This dual-task approach enables the model to learn both categorical market direction and continuous price movements.
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
tags:
|
| 5 |
+
- pytorch
|
| 6 |
+
- candlestick
|
| 7 |
+
- financial-analysis
|
| 8 |
+
- multimodal
|
| 9 |
+
- bert
|
| 10 |
+
- vit
|
| 11 |
+
- cross-attention
|
| 12 |
+
- trading
|
| 13 |
+
- forecasting
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# CandleFusion Model
|
| 17 |
+
|
| 18 |
+
A multimodal financial analysis model that combines textual market sentiment with visual candlestick patterns for enhanced trading signal prediction and price forecasting.
|
| 19 |
+
|
| 20 |
+
## Links
|
| 21 |
+
- π **GitHub Repository**: https://github.com/tuankg1028/CandleFusion
|
| 22 |
+
- π **Demo on Hugging Face Spaces**: https://huggingface.co/spaces/tuankg1028/candlefusion
|
| 23 |
+
|
| 24 |
+
## Training Results
|
| 25 |
+
- **Best Epoch**: 18
|
| 26 |
+
- **Best Validation Loss**: 316165.5985
|
| 27 |
+
- **Training Epochs**: 23
|
| 28 |
+
- **Early Stopping**: Yes
|
| 29 |
+
|
| 30 |
+
## Architecture Overview
|
| 31 |
+
|
| 32 |
+
### Core Components
|
| 33 |
+
- **Text Encoder**: BERT (bert-base-uncased) for processing market sentiment and news
|
| 34 |
+
- **Vision Encoder**: Vision Transformer (ViT-base-patch16-224) for candlestick pattern recognition
|
| 35 |
+
- **Cross-Attention Fusion**: Multi-head attention mechanism (8 heads, 768 dim) for text-image integration
|
| 36 |
+
- **Dual Task Heads**:
|
| 37 |
+
- Classification head for trading signals (buy/sell/hold)
|
| 38 |
+
- Regression head for next closing price prediction
|
| 39 |
+
|
| 40 |
+
### Data Flow
|
| 41 |
+
1. **Text Processing**: Market sentiment -> BERT -> CLS token (768-dim)
|
| 42 |
+
2. **Image Processing**: Candlestick charts -> ViT -> Patch embeddings (197 tokens, 768-dim each)
|
| 43 |
+
3. **Cross-Modal Fusion**: Text CLS as query, Image patches as keys/values -> Fused representation
|
| 44 |
+
4. **Dual Predictions**:
|
| 45 |
+
- Fused features -> Classification head -> Trading signal logits
|
| 46 |
+
- Fused features -> Regression head -> Price forecast
|
| 47 |
+
|
| 48 |
+
### Model Specifications
|
| 49 |
+
- **Input Text**: Tokenized to max 64 tokens
|
| 50 |
+
- **Input Images**: Resized to 224x224 RGB
|
| 51 |
+
- **Hidden Dimension**: 768 (consistent across encoders)
|
| 52 |
+
- **Output Classes**: 3 (buy/sell/hold)
|
| 53 |
+
- **Dropout**: 0.3 in both heads
|
| 54 |
+
|
| 55 |
+
## Training Details
|
| 56 |
+
- **Epochs**: 100
|
| 57 |
+
- **Learning Rate**: 2e-05
|
| 58 |
+
- **Loss Function**: CrossEntropy (classification) + MSE (regression)
|
| 59 |
+
- **Loss Weight (alpha)**: 0.5 for regression term
|
| 60 |
+
- **Optimizer**: AdamW with linear scheduling
|
| 61 |
+
- **Early Stopping Patience**: 5
|
| 62 |
+
|
| 63 |
+
## Usage
|
| 64 |
+
```python
|
| 65 |
+
from model import CrossAttentionModel
|
| 66 |
+
import torch
|
| 67 |
+
|
| 68 |
+
# Load model
|
| 69 |
+
model = CrossAttentionModel()
|
| 70 |
+
model.load_state_dict(torch.load("pytorch_model.bin"))
|
| 71 |
+
model.eval()
|
| 72 |
+
|
| 73 |
+
# Inference
|
| 74 |
+
outputs = model(input_ids, attention_mask, pixel_values)
|
| 75 |
+
trading_signals = outputs["logits"]
|
| 76 |
+
price_forecast = outputs["forecast"]
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
## Performance
|
| 80 |
+
The model simultaneously optimizes for:
|
| 81 |
+
- **Classification Task**: Trading signal accuracy
|
| 82 |
+
- **Regression Task**: Price prediction MSE
|
| 83 |
+
|
| 84 |
+
This dual-task approach enables the model to learn both categorical market direction and continuous price movements.
|
|
|