--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: e8836a40-7200-413a-b92e-d4209b42b924 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 968db73206594aeb_train_data.json ds_type: json format: custom path: /workspace/input_data/968db73206594aeb_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: false group_by_length: false hub_model_id: tuantmdev/e8836a40-7200-413a-b92e-d4209b42b924 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 2e-05 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 40 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/968db73206594aeb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_strategy: best saves_per_epoch: 5 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2c3da917-689e-4bd3-90d5-56c9da9aa664 wandb_project: Gradients-On-Demand wandb_run: unknown wandb_runid: 2c3da917-689e-4bd3-90d5-56c9da9aa664 warmup_steps: 80 weight_decay: 0.01 xformers_attention: null ```

# e8836a40-7200-413a-b92e-d4209b42b924 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 80 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 2.8757 | | 45.9309 | 0.0067 | 40 | 2.8658 | | 45.1695 | 0.0135 | 80 | 2.8076 | | 44.3879 | 0.0202 | 120 | 2.7497 | | 43.9453 | 0.0270 | 160 | 2.7355 | | 43.8402 | 0.0337 | 200 | 2.7333 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1