Mask Generation
sam2
twelcone commited on
Commit
a7906b4
·
verified ·
1 Parent(s): 77a920c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -34
README.md CHANGED
@@ -4,45 +4,18 @@ pipeline_tag: mask-generation
4
  library_name: sam2
5
  ---
6
 
7
- Repository for SAM 2: Segment Anything in Images and Videos, a foundation model towards solving promptable visual segmentation in images and videos from FAIR. See the [SAM 2 paper](https://arxiv.org/abs/2408.00714) for more information.
 
8
 
9
- The official code is publicly release in this [repo](https://github.com/facebookresearch/segment-anything-2/).
10
 
11
  ## Usage
12
 
13
- For image prediction:
 
 
 
14
 
15
- ```python
16
- import torch
17
- from sam2.sam2_image_predictor import SAM2ImagePredictor
18
-
19
- predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-small")
20
-
21
- with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
22
- predictor.set_image(<your_image>)
23
- masks, _, _ = predictor.predict(<input_prompts>)
24
- ```
25
-
26
- For video prediction:
27
-
28
- ```python
29
- import torch
30
- from sam2.sam2_video_predictor import SAM2VideoPredictor
31
-
32
- predictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-small")
33
-
34
- with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
35
- state = predictor.init_state(<your_video>)
36
-
37
- # add new prompts and instantly get the output on the same frame
38
- frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, <your_prompts>):
39
-
40
- # propagate the prompts to get masklets throughout the video
41
- for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
42
- ...
43
- ```
44
-
45
- Refer to the [demo notebooks](https://github.com/facebookresearch/segment-anything-2/tree/main/notebooks) for details.
46
 
47
  ### Citation
48
 
 
4
  library_name: sam2
5
  ---
6
 
7
+ MedSAM2 Small - CoreML Version
8
+ MedSAM2 Small is a specialized version of SAM2 for medical image segmentation tasks, now available for use with CoreML. This model is optimized to work seamlessly on Apple devices, enabling efficient, on-device predictions. To get started, follow the instructions below.
9
 
10
+ For detailed information, refer to the SAM2 paper and the official repository. The official code is publicly release in this [repo](https://github.com/facebookresearch/segment-anything-2/).
11
 
12
  ## Usage
13
 
14
+ 1. Download the .zip files containing the CoreML model from the repo.
15
+ 2. Extract the contents of the .zip file to a directory of your choice.
16
+ 3. Push to [SAM2 Studio](https://github.com/huggingface/sam2-studio)
17
+ 4. Open SAM2 Studio Repo on your Apple device using XCode.
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ### Citation
21