--- library_name: transformers base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: learn_hf_phishing_not_phishing_text_classifier_rubert results: [] --- # learn_hf_phishing_not_phishing_text_classifier_rubert This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1041 - Accuracy: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5787 | 1.0 | 10 | 0.2982 | 0.9610 | | 0.1417 | 2.0 | 20 | 0.1449 | 0.9610 | | 0.0454 | 3.0 | 30 | 0.0945 | 0.9870 | | 0.1515 | 4.0 | 40 | 0.2828 | 0.9610 | | 0.0611 | 5.0 | 50 | 0.0820 | 0.9870 | | 0.0018 | 6.0 | 60 | 0.0945 | 0.9870 | | 0.0033 | 7.0 | 70 | 0.0998 | 0.9870 | | 0.0006 | 8.0 | 80 | 0.1025 | 0.9870 | | 0.0005 | 9.0 | 90 | 0.1037 | 0.9870 | | 0.0004 | 10.0 | 100 | 0.1041 | 0.9870 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1