Add IQ1_S notes and prep for upload
Browse files
README.md
CHANGED
@@ -167,18 +167,73 @@ custom=$(
|
|
167 |
</details>
|
168 |
|
169 |
#### * `IQ1_S` 132.915 GiB (1.699 BPW)
|
170 |
-
|
171 |
|
172 |
-
|
173 |
|
174 |
-
|
175 |
|
176 |
<details>
|
177 |
|
178 |
<summary>👈 Secret Recipe</summary>
|
179 |
|
180 |
```bash
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
```
|
183 |
|
184 |
</details>
|
@@ -213,7 +268,7 @@ cmake --build ./build --config Release -j $(nproc)
|
|
213 |
```
|
214 |
Adjust `--threads` to be equal to number of physical cores. Refer to various discussions on my other models for multi-NUMA, dual socket, and varying `--threads` and `--threads-batch` for larger server rigs.
|
215 |
|
216 |
-
If you OOM on VRAM, remove the additional `-ot "...=CUDA0"` or you can increase offload layers if you have more VRAM
|
217 |
|
218 |
Test out `-rtr` to run-time-repack tensors to `_r4` variants layers when running on CPU/RAM likely faster in default ubatch sizes. Note this disables mmap() so will need enough RAM to malloc all the non-offloaded weights on startup.
|
219 |
|
@@ -221,6 +276,10 @@ Generally `-ub 2048 -b 2048` or `-ub 4096 -b 4096` can give *much* faster PP spe
|
|
221 |
|
222 |
Use `llama-sweep-bench --warmup-batch ...` to benchmark various configurations with your hardware to report to the community!
|
223 |
|
|
|
|
|
|
|
|
|
224 |
## References
|
225 |
* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)
|
226 |
* [Larger ik quants available here: Kebob/DeepSeek-TNG-R1T2-Chimera-IK_GGUF](https://huggingface.co/Kebob/DeepSeek-TNG-R1T2-Chimera-IK_GGUF)
|
|
|
167 |
</details>
|
168 |
|
169 |
#### * `IQ1_S` 132.915 GiB (1.699 BPW)
|
170 |
+
Not recommended. "For the desperate". If you can fit a larger model in RAM+VRAM choose a larger model as it might even run faster and will definitely have better perplexity (likely better quality).
|
171 |
|
172 |
+
Special mix `IQ1_S` `ffn_(gate|up)_exps` and `IQ1_M` `ffn_down_exps` routed experts. Mostly `iq4_ks/iq3_ks` for attn and shared expert. `iq4_k` `token_embd` and `iq5_k` `output` "head".
|
173 |
|
174 |
+
Final estimate: PPL = 4.9878 +/- 0.02999
|
175 |
|
176 |
<details>
|
177 |
|
178 |
<summary>👈 Secret Recipe</summary>
|
179 |
|
180 |
```bash
|
181 |
+
#!/usr/bin/env bash
|
182 |
+
|
183 |
+
custom="
|
184 |
+
# First 3 dense layers (0-3) (GPU)
|
185 |
+
# Except blk.*.attn_k_b.weight is not divisible by 256 so only supports qN_0
|
186 |
+
blk\.[0-2]\.attn_k_b.*=q4_0
|
187 |
+
blk\.[0-2]\.attn_.*=iq4_ks
|
188 |
+
blk\.[0-2]\.ffn_down.*=iq4_ks
|
189 |
+
blk\.[0-2]\.ffn_(gate|up).*=iq3_ks
|
190 |
+
blk\.[0-2]\..*=iq4_ks
|
191 |
+
|
192 |
+
# All attention, norm weights, and bias tensors for MoE layers (3-60) (GPU)
|
193 |
+
# Except blk.*.attn_k_b.weight is not divisible by 256 so only supports qN_0
|
194 |
+
blk\.[3-9]\.attn_k_b.*=q4_0
|
195 |
+
blk\.[1-5][0-9]\.attn_k_b.*=q4_0
|
196 |
+
blk\.60\.attn_k_b.*=q4_0
|
197 |
+
|
198 |
+
blk\.[3-9]\.attn_.*=iq4_ks
|
199 |
+
blk\.[1-5][0-9]\.attn_.*=iq4_ks
|
200 |
+
blk\.60\.attn_.*=iq4_ks
|
201 |
+
|
202 |
+
# Shared Expert (3-60) (GPU)
|
203 |
+
blk\.[3-9]\.ffn_down_shexp\.weight=iq4_ks
|
204 |
+
blk\.[1-5][0-9]\.ffn_down_shexp\.weight=iq4_ks
|
205 |
+
blk\.60\.ffn_down_shexp\.weight=iq4_ks
|
206 |
+
|
207 |
+
blk\.[3-9]\.ffn_(gate|up)_shexp\.weight=iq3_ks
|
208 |
+
blk\.[1-5][0-9]\.ffn_(gate|up)_shexp\.weight=iq3_ks
|
209 |
+
blk\.60\.ffn_(gate|up)_shexp\.weight=iq3_ks
|
210 |
+
|
211 |
+
# Routed Experts (3-60) (CPU)
|
212 |
+
blk\.[3-9]\.ffn_down_exps\.weight=iq1_m
|
213 |
+
blk\.[1-5][0-9]\.ffn_down_exps\.weight=iq1_m
|
214 |
+
blk\.60\.ffn_down_exps\.weight=iq1_m
|
215 |
+
|
216 |
+
blk\.[3-9]\.ffn_(gate|up)_exps\.weight=iq1_s
|
217 |
+
blk\.[1-5][0-9]\.ffn_(gate|up)_exps\.weight=iq1_s
|
218 |
+
blk\.60\.ffn_(gate|up)_exps\.weight=iq1_s
|
219 |
+
|
220 |
+
# Token embedding and output tensors (GPU)
|
221 |
+
token_embd\.weight=iq4_k
|
222 |
+
output\.weight=iq5_k
|
223 |
+
"
|
224 |
+
|
225 |
+
custom=$(
|
226 |
+
echo "$custom" | grep -v '^#' | \
|
227 |
+
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
|
228 |
+
)
|
229 |
+
|
230 |
+
./build/bin/llama-quantize \
|
231 |
+
--custom-q "$custom" \
|
232 |
+
--imatrix /mnt/raid/models/ubergarm/DeepSeek-TNG-R1T2-Chimera-GGUF/imatrix-DeepSeek-TNG-R1T2-Chimera-Q8_0.dat \
|
233 |
+
/mnt/raid/models/ubergarm/DeepSeek-TNG-R1T2-Chimera-GGUF/DeepSeek-TNG-R1T2-Chimera-256x21B-BF16-00001-of-00030.gguf \
|
234 |
+
/mnt/raid/models/ubergarm/DeepSeek-TNG-R1T2-Chimera-GGUF/DeepSeek-TNG-R1T2-Chimera-IQ1_S.gguf \
|
235 |
+
IQ1_S \
|
236 |
+
24
|
237 |
```
|
238 |
|
239 |
</details>
|
|
|
268 |
```
|
269 |
Adjust `--threads` to be equal to number of physical cores. Refer to various discussions on my other models for multi-NUMA, dual socket, and varying `--threads` and `--threads-batch` for larger server rigs.
|
270 |
|
271 |
+
If you OOM on VRAM, remove the additional `-ot "...=CUDA0"` or you can increase offload layers if you have more VRAM with multi-GPU targets e.g. `-ot "blk\.(5|6)\.ffn_.*=CUDA1" \`.
|
272 |
|
273 |
Test out `-rtr` to run-time-repack tensors to `_r4` variants layers when running on CPU/RAM likely faster in default ubatch sizes. Note this disables mmap() so will need enough RAM to malloc all the non-offloaded weights on startup.
|
274 |
|
|
|
276 |
|
277 |
Use `llama-sweep-bench --warmup-batch ...` to benchmark various configurations with your hardware to report to the community!
|
278 |
|
279 |
+
## TODO
|
280 |
+
- [ ] Given the `IQ1_S_R4` is not symmetric with `IQ1_S` it doesn't work with `-rtr` so I might look into releasing an `_R4` variant after some `llama-sweep-bench` testing.
|
281 |
+
- [ ] Consider a slightly larger model? (gotta free up some disk space lol)
|
282 |
+
|
283 |
## References
|
284 |
* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)
|
285 |
* [Larger ik quants available here: Kebob/DeepSeek-TNG-R1T2-Chimera-IK_GGUF](https://huggingface.co/Kebob/DeepSeek-TNG-R1T2-Chimera-IK_GGUF)
|