unfinity commited on
Commit
ac3c17f
·
1 Parent(s): 1c63061

upload PPO agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 174.86 +/- 75.99
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 262.60 +/- 17.02
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85ceb86f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85ceb8d050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85ceb8d0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85ceb8d170>", "_build": "<function ActorCriticPolicy._build at 0x7f85ceb8d200>", "forward": "<function ActorCriticPolicy.forward at 0x7f85ceb8d290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85ceb8d320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f85ceb8d3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85ceb8d440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85ceb8d4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85ceb8d560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f85cebd3a80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652608235.4587185, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPqGSD44Aru71VqTuydzBjkDYjO9jczmOQAAgD8AAIA/OvfAvrb+Cj2MNMS6dFgVOd3oDb5QA+Q5AACAPwAAgD9TjUU+vEjlPktv5b1EHjy+EJmVPDSBHz0AAAAAAAAAAIC9PL32tAm6rQYSvIK7sjZ/xcG6uPMltgAAgD8AAIA/84flPRHEbD8i55E9KUWcviL1gj2zcOU8AAAAAAAAAABjksK+qyE3P1ISLr1104q+1FhXvFMVmj0AAAAAAAAAAD2kpr7M7SI/k+JPvT/yqb7GTpO9ReR1vAAAAAAAAAAAulx/vj2sATzWfoO7Z/VHOXYgmb3wyJc6AACAPwAAgD+AnLI99tAIunW4qzqhglE2yGvCO/4w07kAAIA/AACAPzPcEj4FOqm7kgMDvK3vHzpw+iq9ZhgKOwAAgD8AAIA/oJ+KPs9+GT/MAY69MkV2vvbSED0O7HC9AAAAAAAAAAAzrpc8KbAJuh+Jjzox2Ug1sBOBOoYgq7kAAIA/AACAP5pCYr0pADu6fS/qOrzYkDWog5K6908FugAAgD8AAIA/hj0KvhQukjkuPMO6M1IONyN+Grz7o+Q5AACAPwAAgD/6UjO+NgwzvL3ZmLxrjbi6ZXmcPc7WlzsAAIA/AACAP2ZmgTq4VoO5DUCFOi92IDb4WOE7nhGeuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6e+l8KARYUCUhpRSlIwBbJRN6AOMAXSUR0CMwAmWt2cKdX2UKGgGaAloD0MICmXh62vOWkCUhpRSlGgVTegDaBZHQIzC/RgJC0F1fZQoaAZoCWgPQwjXM4RjlnxfQJSGlFKUaBVN6ANoFkdAjNFwk5ZKWnV9lChoBmgJaA9DCJLmj2ltIWJAlIaUUpRoFU3oA2gWR0CM15QGfPHDdX2UKGgGaAloD0MIea7vw0GWOMCUhpRSlGgVTQ8BaBZHQIz6s1EVnEl1fZQoaAZoCWgPQwhauReYlXNiQJSGlFKUaBVN6ANoFkdAjQSR7RfF73V9lChoBmgJaA9DCA8pBkg0EF5AlIaUUpRoFU3oA2gWR0CNDgi3XqZ/dX2UKGgGaAloD0MI2q7QB8smXkCUhpRSlGgVTegDaBZHQI0QJwqAjIJ1fZQoaAZoCWgPQwjb4ET0a5ZfQJSGlFKUaBVN6ANoFkdAjROIkzGgjHV9lChoBmgJaA9DCK3cC8wKTlhAlIaUUpRoFU3oA2gWR0CNE+Oby6MBdX2UKGgGaAloD0MIJZUp5qDZYkCUhpRSlGgVTegDaBZHQI0dylHjIaN1fZQoaAZoCWgPQwio5JzYQ6RdQJSGlFKUaBVN6ANoFkdAjSWaQeV9nnV9lChoBmgJaA9DCMBC5sqg3WNAlIaUUpRoFU3oA2gWR0CNL11FH8TBdX2UKGgGaAloD0MIS1mGONaNX0CUhpRSlGgVTegDaBZHQI0x2uieumt1fZQoaAZoCWgPQwjFkJxM3KRTQJSGlFKUaBVN6ANoFkdAjTLTSb6P83V9lChoBmgJaA9DCL+CNGPRAVxAlIaUUpRoFU3oA2gWR0CNNFaUzKs/dX2UKGgGaAloD0MITu/i/TjWYECUhpRSlGgVTegDaBZHQI02ehwl0HR1fZQoaAZoCWgPQwiQv7SoT+RbQJSGlFKUaBVN6ANoFkdAjTbOCwr1/XV9lChoBmgJaA9DCNcTXRd+IldAlIaUUpRoFU3oA2gWR0CNOd81Gb1AdX2UKGgGaAloD0MI1siutIwEQECUhpRSlGgVTXoBaBZHQI06bxy4nWt1fZQoaAZoCWgPQwhA3qtWJoRnQJSGlFKUaBVNxQFoFkdAjUS5wn6VMXV9lChoBmgJaA9DCJAwDFhyK1hAlIaUUpRoFU3oA2gWR0CNSBtBOYY0dX2UKGgGaAloD0MI56c4DjzsZkCUhpRSlGgVTegDaBZHQI15sKG+K0l1fZQoaAZoCWgPQwhs7X2qColeQJSGlFKUaBVN6ANoFkdAjYYr8R+SbHV9lChoBmgJaA9DCJMBoIqbT2dAlIaUUpRoFU1YAmgWR0CNkVg/keZHdX2UKGgGaAloD0MIyv0ORYGlV0CUhpRSlGgVTegDaBZHQI2SMH0K7Zp1fZQoaAZoCWgPQwhE2zF1V+BcQJSGlFKUaBVN6ANoFkdAjlPtBnjABXV9lChoBmgJaA9DCBa/KazU9mBAlIaUUpRoFU3oA2gWR0COYYxnnMdMdX2UKGgGaAloD0MIO8eA7PVjYECUhpRSlGgVTegDaBZHQI5rU1EVnEl1fZQoaAZoCWgPQwjHZdzUwCFiQJSGlFKUaBVN6ANoFkdAjnYqkl/pdXV9lChoBmgJaA9DCM3lBkOdOWJAlIaUUpRoFU3oA2gWR0COeP/QSi/PdX2UKGgGaAloD0MIBtZx/FBbW0CUhpRSlGgVTegDaBZHQI56E43m3fB1fZQoaAZoCWgPQwhN2ekHdS1bQJSGlFKUaBVN6ANoFkdAjnuz9KmKqHV9lChoBmgJaA9DCFfQtMTK81xAlIaUUpRoFU3oA2gWR0COfgTrVvuPdX2UKGgGaAloD0MIBkt1AS95WUCUhpRSlGgVTegDaBZHQI5+ZUYKpkx1fZQoaAZoCWgPQwj4/DBC+H9gQJSGlFKUaBVN6ANoFkdAjoHlcY64lXV9lChoBmgJaA9DCNJVurvOMWZAlIaUUpRoFU1nAWgWR0COg3xwQ176dX2UKGgGaAloD0MIy73ArNBvYkCUhpRSlGgVTegDaBZHQI6NpGpda+x1fZQoaAZoCWgPQwj4TzdQ4B5nQJSGlFKUaBVN6ANoFkdAjpDxeTmnwXV9lChoBmgJaA9DCBSwHYzY5w1AlIaUUpRoFU0SAWgWR0COl6bsniNsdX2UKGgGaAloD0MIhe0nY3xgKkCUhpRSlGgVTR4BaBZHQI6c4m3OObR1fZQoaAZoCWgPQwjj++JSlX4jwJSGlFKUaBVNMQFoFkdAjqU6qCHymXV9lChoBmgJaA9DCJF/ZhAfyWFAlIaUUpRoFU3oA2gWR0COuNbGm1pkdX2UKGgGaAloD0MIeJj2zf3ZVUCUhpRSlGgVTegDaBZHQI7Cwkqtozx1fZQoaAZoCWgPQwjHaB1VTRtbQJSGlFKUaBVN6ANoFkdAjstYraufVnV9lChoBmgJaA9DCL1UbMzrUGFAlIaUUpRoFU3oA2gWR0COzAKVpsXSdX2UKGgGaAloD0MItfzAVZ68X0CUhpRSlGgVTegDaBZHQI7epaC+UQl1fZQoaAZoCWgPQwjysiYW+PdcQJSGlFKUaBVN6ANoFkdAjujMKb8WK3V9lChoBmgJaA9DCOHSMecZdGJAlIaUUpRoFU3oA2gWR0CO9DC5VfeDdX2UKGgGaAloD0MI4dBbPDyEYUCUhpRSlGgVTegDaBZHQI73CtLcsUZ1fZQoaAZoCWgPQwjPg7uz9uBgQJSGlFKUaBVN6ANoFkdAjvnpp35eq3V9lChoBmgJaA9DCNTS3AphU19AlIaUUpRoFU3oA2gWR0CO/Mb0e2d/dX2UKGgGaAloD0MIGmoUkkyaYUCUhpRSlGgVTegDaBZHQI8AeajN6gN1fZQoaAZoCWgPQwhKQiJt48xfQJSGlFKUaBVN6ANoFkdAjw2x//echHV9lChoBmgJaA9DCP93RIXqzVxAlIaUUpRoFU3oA2gWR0CPEYafjCHidX2UKGgGaAloD0MII2WLpF37ZUCUhpRSlGgVTZIBaBZHQI8SowZflZJ1fZQoaAZoCWgPQwhATpgwmkxhQJSGlFKUaBVN6ANoFkdAjxjqjafzz3V9lChoBmgJaA9DCPGBHf+FumFAlIaUUpRoFU3oA2gWR0CPHjwc5sCUdX2UKGgGaAloD0MIQrXBiegX8L+UhpRSlGgVTUkBaBZHQI8eX/JeVs11fZQoaAZoCWgPQwjnxB7axwNfQJSGlFKUaBVN6ANoFkdAjyYgZ0jkdXV9lChoBmgJaA9DCCL+YUuPGmNAlIaUUpRoFU3oA2gWR0CPOLk+5e7ddX2UKGgGaAloD0MI0bAYdS1ZYkCUhpRSlGgVTegDaBZHQI9CNFpfx+d1fZQoaAZoCWgPQwiqgHueP0FbQJSGlFKUaBVN6ANoFkdAj0sW1D0Dl3V9lChoBmgJaA9DCP7uHTWmH2VAlIaUUpRoFU3oA2gWR0CPS8SNfgJkdX2UKGgGaAloD0MIjbRU3o6YXkCUhpRSlGgVTegDaBZHQJASyuV5a/11fZQoaAZoCWgPQwg9f9qoTm1fQJSGlFKUaBVN6ANoFkdAkBkZZSvTw3V9lChoBmgJaA9DCEKz696KhFtAlIaUUpRoFU3oA2gWR0CQHFvUjLSvdX2UKGgGaAloD0MIi/okd9g1XkCUhpRSlGgVTegDaBZHQJAeFc9nscB1fZQoaAZoCWgPQwhDWI0lrC9jQJSGlFKUaBVN6ANoFkdAkCBoG2TgVHV9lChoBmgJaA9DCPVm1HyVAFdAlIaUUpRoFU3oA2gWR0CQKKQxesxPdX2UKGgGaAloD0MI4PWZsz6PXkCUhpRSlGgVTegDaBZHQJAq7wOOKfp1fZQoaAZoCWgPQwg6r7FLVMNcQJSGlFKUaBVN6ANoFkdAkCuOxjawlnV9lChoBmgJaA9DCIxLVdrihjXAlIaUUpRoFU0fAWgWR0CQLeU0Nz8xdX2UKGgGaAloD0MIArhZvFijYUCUhpRSlGgVTegDaBZHQJAu7KzRhMJ1fZQoaAZoCWgPQwg3T3XITR5sQJSGlFKUaBVN8gJoFkdAkDAS3LFGX3V9lChoBmgJaA9DCDcawFsgr1lAlIaUUpRoFU3oA2gWR0CQMYv7WNFSdX2UKGgGaAloD0MI1ouhnGg3W0CUhpRSlGgVTegDaBZHQJAxnkp7TlV1fZQoaAZoCWgPQwgWURN9Pu9eQJSGlFKUaBVN6ANoFkdAkDTe8Gs3hnV9lChoBmgJaA9DCDlhwmhW4V1AlIaUUpRoFU3oA2gWR0CQQWMqBmPHdX2UKGgGaAloD0MI5ujxe5uyM8CUhpRSlGgVTQgBaBZHQJBEP1ZkkKN1fZQoaAZoCWgPQwhPH4E/fCVlQJSGlFKUaBVN6ANoFkdAkEWqvzOHFnV9lChoBmgJaA9DCF2Kq8o+N2FAlIaUUpRoFU3oA2gWR0CQRf4VRDTjdX2UKGgGaAloD0MI+FPjpZsBbUCUhpRSlGgVTY4BaBZHQJBIJeHBUJh1fZQoaAZoCWgPQwgFxY8xdw9oQJSGlFKUaBVNLgNoFkdAkE49AkcCHXV9lChoBmgJaA9DCEPjiSDOZ25AlIaUUpRoFU11AmgWR0CQUYegte2NdX2UKGgGaAloD0MIat5xio59WECUhpRSlGgVTegDaBZHQJBRsNrj5sV1fZQoaAZoCWgPQwh/aydKQuVgQJSGlFKUaBVN6ANoFkdAkFmJSFXaJ3V9lChoBmgJaA9DCBVXlX3XG2dAlIaUUpRoFU3oA2gWR0CQW3qQA+6idX2UKGgGaAloD0MIYr8n1imvYECUhpRSlGgVTegDaBZHQJBisDNhVlx1fZQoaAZoCWgPQwg1uK0tvOJhQJSGlFKUaBVN6ANoFkdAkGSuRoysS3V9lChoBmgJaA9DCJdvfVhv1ltAlIaUUpRoFU3oA2gWR0CQZTraufVadX2UKGgGaAloD0MItHbbhebTXkCUhpRSlGgVTegDaBZHQJBosEFGG211fZQoaAZoCWgPQwiwj05deaBkQJSGlFKUaBVN6ANoFkdAkGnirgflqHV9lChoBmgJaA9DCKIo0CdyP2BAlIaUUpRoFU3oA2gWR0CQa4kpZwGXdX2UKGgGaAloD0MI+1sC8E/JOECUhpRSlGgVS+xoFkdAkHFDwtrbg3V9lChoBmgJaA9DCIaqmEq/72FAlIaUUpRoFU3oA2gWR0CQfk0+kgwHdX2UKGgGaAloD0MIwcQfRZ2oYECUhpRSlGgVTegDaBZHQJCBaUmlZYB1fZQoaAZoCWgPQwhXlugsM/BgQJSGlFKUaBVN6ANoFkdAkILlgc94eXV9lChoBmgJaA9DCKVmD7QCMltAlIaUUpRoFU3oA2gWR0CQgziPyTY/dX2UKGgGaAloD0MIj2/vGvTzYUCUhpRSlGgVTegDaBZHQJCFk1WKdhB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85ceb86f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85ceb8d050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85ceb8d0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85ceb8d170>", "_build": "<function ActorCriticPolicy._build at 0x7f85ceb8d200>", "forward": "<function ActorCriticPolicy.forward at 0x7f85ceb8d290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85ceb8d320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f85ceb8d3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85ceb8d440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85ceb8d4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85ceb8d560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f85cebd3a80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652611138.2159026, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACCltL6jUSo9CbGltqo+mzSHC9+9y5z4NQAAgD8AAIA/5mOpPZtIpT181Eq+hjT5vbyEubtocBW7AAAAAAAAAAAz3VS8XCEhvAb8xTomsT49wx5GvZChTLkAAIA/AACAPxD7y74Fc5q7B7akOuOqAzmJjx0+oCszugAAgD8AAIA/wyJhvvTw+bzKuC077FjFOW18Xz57Mme6AACAPwAAgD+N9AQ+JFaRP3XnST6WVvu+2OvHPQ5YFb0AAAAAAAAAABovGr5sufi7gEB7s+DYoLICTEQ9cvcqNAAAgD8AAIA/riCqvh3ofL0Tl867VQS4uszIqT42MJy2AACAPwAAgD8Ao7E+o4k1PyifmD2h1JO+sr4ZPssWtb0AAAAAAAAAABqk+j1TjYk/OtmjPpVeB7++bNM9/divvAAAAAAAAAAAOlwxvvewDj9O+JY8w/qOvlavfb1XkDi7AAAAAAAAAABmbD48PoG7P6U7ID60WoY+CDUUPBhncT0AAAAAAAAAAIBsGz32GE66/t5IM6Bfqq8zjje79UXBswAAgD8AAIA/YM10PpBn5j7Yeza81C1SvqsHfj1YGmK9AAAAAAAAAAAa9xC+UrHsuyJ+xbx7DRW7HEFAPdQlBDwAAIA/AACAP/MjiD2V2Do/p2YPPT3tsr5veS88WaWgvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh9uhYbFDb0CUhpRSlIwBbJRNPQGMAXSUR0CtDNn3cpLFdX2UKGgGaAloD0MII9i4/t0ccECUhpRSlGgVTR0BaBZHQK0OZ/+bVjJ1fZQoaAZoCWgPQwgGobyPI59vQJSGlFKUaBVNFwFoFkdArQ7GbVjI73V9lChoBmgJaA9DCE8/qIsUBG1AlIaUUpRoFU0UAWgWR0CtED0XgtOEdX2UKGgGaAloD0MI3iBaK1qhZECUhpRSlGgVTegDaBZHQK0QuVnEl3R1fZQoaAZoCWgPQwgs0y8RL9JyQJSGlFKUaBVNbAFoFkdArRET1dxAB3V9lChoBmgJaA9DCGAgCJDhXHBAlIaUUpRoFU0eAWgWR0CtESBppN9IdX2UKGgGaAloD0MIk1LQ7aXcbECUhpRSlGgVTUQBaBZHQK0RK00FbFF1fZQoaAZoCWgPQwiYNEbraN1xQJSGlFKUaBVNIQFoFkdArRFAChew93V9lChoBmgJaA9DCELSp1U0n3BAlIaUUpRoFU1GAmgWR0CtEZoX0oSddX2UKGgGaAloD0MI2Ls/3quxbECUhpRSlGgVTSADaBZHQK0Sm5HVf/p1fZQoaAZoCWgPQwh7oYDt4FhtQJSGlFKUaBVNDwFoFkdArRLG/+Kjz3V9lChoBmgJaA9DCHIz3IDP6l9AlIaUUpRoFU3oA2gWR0CtEyVbA1vVdX2UKGgGaAloD0MISghW1csbMECUhpRSlGgVS/VoFkdArROOv2Xb/XV9lChoBmgJaA9DCJKumXwzmm1AlIaUUpRoFUv1aBZHQK0T0KMvRJF1fZQoaAZoCWgPQwi0HOihNkNxQJSGlFKUaBVNAAFoFkdArSiUU0vXb3V9lChoBmgJaA9DCC3ovTHE1XBAlIaUUpRoFU0CAWgWR0CtKKnWjGkvdX2UKGgGaAloD0MIQ3IycSuFb0CUhpRSlGgVTSQBaBZHQK0o/+0gKWt1fZQoaAZoCWgPQwgXLNUF/FFxQJSGlFKUaBVNJgFoFkdArSnY4sEq2HV9lChoBmgJaA9DCJHT1/N1AHFAlIaUUpRoFU07AWgWR0CtKegiV0LddX2UKGgGaAloD0MI+YIWEjBTYECUhpRSlGgVTegDaBZHQK0p7alk6Lh1fZQoaAZoCWgPQwjmzeFa7axxQJSGlFKUaBVNdwFoFkdArSo0yHmA9XV9lChoBmgJaA9DCGb35GGhZilAlIaUUpRoFUvsaBZHQK0qSz544ZN1fZQoaAZoCWgPQwjooEs4dGZvQJSGlFKUaBVNXQFoFkdArSpz4nF5wHV9lChoBmgJaA9DCMr9DkVBZnBAlIaUUpRoFU0NAWgWR0CtKn+DFqBVdX2UKGgGaAloD0MIRpp4B7jScUCUhpRSlGgVTS4BaBZHQK0r/sQ/X5F1fZQoaAZoCWgPQwhpOjsZ3I9xQJSGlFKUaBVNUgFoFkdArSxbNyHVPXV9lChoBmgJaA9DCKOP+YAA43FAlIaUUpRoFU0cAWgWR0CtLZ+MAFPjdX2UKGgGaAloD0MIqkiFsQX6b0CUhpRSlGgVTR8BaBZHQK0tw/JNj9Z1fZQoaAZoCWgPQwjrVzof3r5wQJSGlFKUaBVN6wFoFkdArS4zgZTAFnV9lChoBmgJaA9DCNfdPNWhrnBAlIaUUpRoFUvzaBZHQK0uvtE5Qxh1fZQoaAZoCWgPQwhLlL2lXEVyQJSGlFKUaBVNQQFoFkdArS7JJAdGRXV9lChoBmgJaA9DCGtHcY461W9AlIaUUpRoFU0WAWgWR0CtLtzYVZcLdX2UKGgGaAloD0MITiUDQBWub0CUhpRSlGgVTQMBaBZHQK0u4fs/pt91fZQoaAZoCWgPQwh6NUBpqLEiQJSGlFKUaBVL+GgWR0CtLucvmHQAdX2UKGgGaAloD0MIZp/HKE+Xb0CUhpRSlGgVTSABaBZHQK0vRFirksB1fZQoaAZoCWgPQwi8s3bbhSxYQJSGlFKUaBVN6ANoFkdArS+QPd2xIXV9lChoBmgJaA9DCPCHn//eoHFAlIaUUpRoFU1bAWgWR0CtL96jnFHbdX2UKGgGaAloD0MITrSrkPLDXUCUhpRSlGgVTegDaBZHQK0wfnZkCmx1fZQoaAZoCWgPQwgSvCGNigNyQJSGlFKUaBVNDQFoFkdArTDscXFcZHV9lChoBmgJaA9DCJ0QOugST19AlIaUUpRoFU3oA2gWR0CtMazySV4YdX2UKGgGaAloD0MIFygpsIDhckCUhpRSlGgVTXEBaBZHQK0yNZ8KG+N1fZQoaAZoCWgPQwi0y7c+rFJwQJSGlFKUaBVNEgFoFkdArTI7Zi/fwnV9lChoBmgJaA9DCMLZrWVyD3FAlIaUUpRoFU0fAWgWR0CtMlOKfnOjdX2UKGgGaAloD0MI5Nu7Bn32bUCUhpRSlGgVTRABaBZHQK0yjZOBUaR1fZQoaAZoCWgPQwjaVN0jm1M0QJSGlFKUaBVL/mgWR0CtMrBCD28JdX2UKGgGaAloD0MILVqAtlWpcECUhpRSlGgVTQIBaBZHQK0y26CDmKZ1fZQoaAZoCWgPQwhi2jf3l8BwQJSGlFKUaBVNJQFoFkdArTNhsj3VTnV9lChoBmgJaA9DCIhlM4fkJnJAlIaUUpRoFU1CAWgWR0CtM9d1EE1VdX2UKGgGaAloD0MIxxLWxthkbkCUhpRSlGgVTQMBaBZHQK0z4QA+6iF1fZQoaAZoCWgPQwibcK/M2wVtQJSGlFKUaBVNMQFoFkdArTRNie/Ya3V9lChoBmgJaA9DCGcPtALDOGlAlIaUUpRoFU0KAWgWR0CtNL8IZ62OdX2UKGgGaAloD0MIiIVa0zwJbkCUhpRSlGgVTQABaBZHQK02nY5ksjF1fZQoaAZoCWgPQwhNZrytdCxyQJSGlFKUaBVNJQFoFkdArTeQfCAMD3V9lChoBmgJaA9DCN4f71VrgnBAlIaUUpRoFU0SAWgWR0CtN+hq0tyxdX2UKGgGaAloD0MIzR39L9fCMECUhpRSlGgVS/VoFkdArTgDImw7knV9lChoBmgJaA9DCEwW9x9ZZ3BAlIaUUpRoFU07AWgWR0CtOFGsFMZhdX2UKGgGaAloD0MIVK2FWeiKbUCUhpRSlGgVTT4CaBZHQK04p+zdDY11fZQoaAZoCWgPQwiI9NvXgSFtQJSGlFKUaBVNCgFoFkdArTkNgWrOq3V9lChoBmgJaA9DCL+dRIR/+m5AlIaUUpRoFU3HAWgWR0CtO3Tgdfb9dX2UKGgGaAloD0MI+gs9YvSHcUCUhpRSlGgVTVkBaBZHQK070x20Re11fZQoaAZoCWgPQwgyWdx/ZAxhQJSGlFKUaBVN6ANoFkdArTvaaTfR/nV9lChoBmgJaA9DCDPDRlm/gG1AlIaUUpRoFU0UAWgWR0CtPHfVAiV0dX2UKGgGaAloD0MIYmh1coZBb0CUhpRSlGgVTQ4BaBZHQK09RyxRl6J1fZQoaAZoCWgPQwh4KuCeZwJwQJSGlFKUaBVNIwFoFkdArT48C7sfJXV9lChoBmgJaA9DCM/0EmMZt3BAlIaUUpRoFU0VAWgWR0CtPkIZydWidX2UKGgGaAloD0MIqP+s+THccECUhpRSlGgVTTMBaBZHQK0+eZBsyi51fZQoaAZoCWgPQwiQaAJFrHNwQJSGlFKUaBVNCAFoFkdArT7EbHZK4HV9lChoBmgJaA9DCGQjEK9rB3JAlIaUUpRoFU11AWgWR0CtQLb9hqj8dX2UKGgGaAloD0MIXoWUnxRZcECUhpRSlGgVTW8CaBZHQK1Awukk8ih1fZQoaAZoCWgPQwi54uKoXDtsQJSGlFKUaBVNAwFoFkdArUF6EeyRjnV9lChoBmgJaA9DCEMc6+I2Xl1AlIaUUpRoFU3oA2gWR0CtQotXYDkmdX2UKGgGaAloD0MICoMyjSZOb0CUhpRSlGgVTR4BaBZHQK1CyiwjdHl1fZQoaAZoCWgPQwiERxtHLLZvQJSGlFKUaBVNIwFoFkdArUPLaPCEYnV9lChoBmgJaA9DCBi1+1UAgmxAlIaUUpRoFU0SAWgWR0CtRGBtUGVzdX2UKGgGaAloD0MIAhHiytkycECUhpRSlGgVS/xoFkdArURtC1JDmnV9lChoBmgJaA9DCPfN/dVjPGJAlIaUUpRoFU3oA2gWR0CtRSVWS2YwdX2UKGgGaAloD0MI4pS5+cbTcECUhpRSlGgVTVkBaBZHQK1F8dOqNqB1fZQoaAZoCWgPQwgp6WFoddVcQJSGlFKUaBVN6ANoFkdArUYkGFBY3nV9lChoBmgJaA9DCLOZQ1ILYmFAlIaUUpRoFU3oA2gWR0CtRsiS7oStdX2UKGgGaAloD0MIXfksz8N+cECUhpRSlGgVS/BoFkdArUbI1m8M/nV9lChoBmgJaA9DCMfa39keLXBAlIaUUpRoFU1CAWgWR0CtR6wKSgXedX2UKGgGaAloD0MIUYiAQ6hXcECUhpRSlGgVS/VoFkdArUftvS+g13V9lChoBmgJaA9DCKzI6IAkPHFAlIaUUpRoFU1mAWgWR0CtSEheokzHdX2UKGgGaAloD0MI9z/AWjWHcECUhpRSlGgVTSQBaBZHQK1Ilu/Dcdp1fZQoaAZoCWgPQwh5zhYQ2lhvQJSGlFKUaBVL+GgWR0CtSL5ha1TjdX2UKGgGaAloD0MIsW1RZoM0XECUhpRSlGgVTegDaBZHQK1JH2r4nF51fZQoaAZoCWgPQwjQmEnUCx5uQJSGlFKUaBVNAQFoFkdArUlVvddmhHV9lChoBmgJaA9DCPQZUG/GFm1AlIaUUpRoFU2PAmgWR0CtSYlCswL3dX2UKGgGaAloD0MIZhL1go+QcECUhpRSlGgVTRYBaBZHQK1Jn2t+1Bt1fZQoaAZoCWgPQwhighq+hfVEQJSGlFKUaBVL9mgWR0CtSjFB6a9cdX2UKGgGaAloD0MIiEz5EFTnQECUhpRSlGgVS/hoFkdArUpgoNNJv3V9lChoBmgJaA9DCFeUEoKVhHBAlIaUUpRoFUv3aBZHQK1K3JkoWpJ1fZQoaAZoCWgPQwgw8x38xN5uQJSGlFKUaBVL92gWR0CtTEhOHnEEdX2UKGgGaAloD0MI21IHeb3bcECUhpRSlGgVS/FoFkdArUyCntOVPnV9lChoBmgJaA9DCJIlcywv73BAlIaUUpRoFU0gAWgWR0CtTLOXeFcqdX2UKGgGaAloD0MIK061FmaacECUhpRSlGgVTUUBaBZHQK1NJuuzQeF1fZQoaAZoCWgPQwhmMbH5OG5vQJSGlFKUaBVNGQFoFkdArU11qzqrzXV9lChoBmgJaA9DCEJD/wQXq2tAlIaUUpRoFUvzaBZHQK1Nxrs0HhV1fZQoaAZoCWgPQwhIUtLDUG9vQJSGlFKUaBVNEgFoFkdArU495OafBnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 224, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_lunar_2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4deaa77709ecea741fe34aeeecf61376295f2d18bbb49f41bd506298edc99983
3
+ size 144090
ppo_lunar_2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo_lunar_2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85ceb86f80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85ceb8d050>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85ceb8d0e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85ceb8d170>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f85ceb8d200>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f85ceb8d290>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85ceb8d320>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f85ceb8d3b0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85ceb8d440>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85ceb8d4d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85ceb8d560>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f85cebd3a80>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652611138.2159026,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACCltL6jUSo9CbGltqo+mzSHC9+9y5z4NQAAgD8AAIA/5mOpPZtIpT181Eq+hjT5vbyEubtocBW7AAAAAAAAAAAz3VS8XCEhvAb8xTomsT49wx5GvZChTLkAAIA/AACAPxD7y74Fc5q7B7akOuOqAzmJjx0+oCszugAAgD8AAIA/wyJhvvTw+bzKuC077FjFOW18Xz57Mme6AACAPwAAgD+N9AQ+JFaRP3XnST6WVvu+2OvHPQ5YFb0AAAAAAAAAABovGr5sufi7gEB7s+DYoLICTEQ9cvcqNAAAgD8AAIA/riCqvh3ofL0Tl867VQS4uszIqT42MJy2AACAPwAAgD8Ao7E+o4k1PyifmD2h1JO+sr4ZPssWtb0AAAAAAAAAABqk+j1TjYk/OtmjPpVeB7++bNM9/divvAAAAAAAAAAAOlwxvvewDj9O+JY8w/qOvlavfb1XkDi7AAAAAAAAAABmbD48PoG7P6U7ID60WoY+CDUUPBhncT0AAAAAAAAAAIBsGz32GE66/t5IM6Bfqq8zjje79UXBswAAgD8AAIA/YM10PpBn5j7Yeza81C1SvqsHfj1YGmK9AAAAAAAAAAAa9xC+UrHsuyJ+xbx7DRW7HEFAPdQlBDwAAIA/AACAP/MjiD2V2Do/p2YPPT3tsr5veS88WaWgvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh9uhYbFDb0CUhpRSlIwBbJRNPQGMAXSUR0CtDNn3cpLFdX2UKGgGaAloD0MII9i4/t0ccECUhpRSlGgVTR0BaBZHQK0OZ/+bVjJ1fZQoaAZoCWgPQwgGobyPI59vQJSGlFKUaBVNFwFoFkdArQ7GbVjI73V9lChoBmgJaA9DCE8/qIsUBG1AlIaUUpRoFU0UAWgWR0CtED0XgtOEdX2UKGgGaAloD0MI3iBaK1qhZECUhpRSlGgVTegDaBZHQK0QuVnEl3R1fZQoaAZoCWgPQwgs0y8RL9JyQJSGlFKUaBVNbAFoFkdArRET1dxAB3V9lChoBmgJaA9DCGAgCJDhXHBAlIaUUpRoFU0eAWgWR0CtESBppN9IdX2UKGgGaAloD0MIk1LQ7aXcbECUhpRSlGgVTUQBaBZHQK0RK00FbFF1fZQoaAZoCWgPQwiYNEbraN1xQJSGlFKUaBVNIQFoFkdArRFAChew93V9lChoBmgJaA9DCELSp1U0n3BAlIaUUpRoFU1GAmgWR0CtEZoX0oSddX2UKGgGaAloD0MI2Ls/3quxbECUhpRSlGgVTSADaBZHQK0Sm5HVf/p1fZQoaAZoCWgPQwh7oYDt4FhtQJSGlFKUaBVNDwFoFkdArRLG/+Kjz3V9lChoBmgJaA9DCHIz3IDP6l9AlIaUUpRoFU3oA2gWR0CtEyVbA1vVdX2UKGgGaAloD0MISghW1csbMECUhpRSlGgVS/VoFkdArROOv2Xb/XV9lChoBmgJaA9DCJKumXwzmm1AlIaUUpRoFUv1aBZHQK0T0KMvRJF1fZQoaAZoCWgPQwi0HOihNkNxQJSGlFKUaBVNAAFoFkdArSiUU0vXb3V9lChoBmgJaA9DCC3ovTHE1XBAlIaUUpRoFU0CAWgWR0CtKKnWjGkvdX2UKGgGaAloD0MIQ3IycSuFb0CUhpRSlGgVTSQBaBZHQK0o/+0gKWt1fZQoaAZoCWgPQwgXLNUF/FFxQJSGlFKUaBVNJgFoFkdArSnY4sEq2HV9lChoBmgJaA9DCJHT1/N1AHFAlIaUUpRoFU07AWgWR0CtKegiV0LddX2UKGgGaAloD0MI+YIWEjBTYECUhpRSlGgVTegDaBZHQK0p7alk6Lh1fZQoaAZoCWgPQwjmzeFa7axxQJSGlFKUaBVNdwFoFkdArSo0yHmA9XV9lChoBmgJaA9DCGb35GGhZilAlIaUUpRoFUvsaBZHQK0qSz544ZN1fZQoaAZoCWgPQwjooEs4dGZvQJSGlFKUaBVNXQFoFkdArSpz4nF5wHV9lChoBmgJaA9DCMr9DkVBZnBAlIaUUpRoFU0NAWgWR0CtKn+DFqBVdX2UKGgGaAloD0MIRpp4B7jScUCUhpRSlGgVTS4BaBZHQK0r/sQ/X5F1fZQoaAZoCWgPQwhpOjsZ3I9xQJSGlFKUaBVNUgFoFkdArSxbNyHVPXV9lChoBmgJaA9DCKOP+YAA43FAlIaUUpRoFU0cAWgWR0CtLZ+MAFPjdX2UKGgGaAloD0MIqkiFsQX6b0CUhpRSlGgVTR8BaBZHQK0tw/JNj9Z1fZQoaAZoCWgPQwjrVzof3r5wQJSGlFKUaBVN6wFoFkdArS4zgZTAFnV9lChoBmgJaA9DCNfdPNWhrnBAlIaUUpRoFUvzaBZHQK0uvtE5Qxh1fZQoaAZoCWgPQwhLlL2lXEVyQJSGlFKUaBVNQQFoFkdArS7JJAdGRXV9lChoBmgJaA9DCGtHcY461W9AlIaUUpRoFU0WAWgWR0CtLtzYVZcLdX2UKGgGaAloD0MITiUDQBWub0CUhpRSlGgVTQMBaBZHQK0u4fs/pt91fZQoaAZoCWgPQwh6NUBpqLEiQJSGlFKUaBVL+GgWR0CtLucvmHQAdX2UKGgGaAloD0MIZp/HKE+Xb0CUhpRSlGgVTSABaBZHQK0vRFirksB1fZQoaAZoCWgPQwi8s3bbhSxYQJSGlFKUaBVN6ANoFkdArS+QPd2xIXV9lChoBmgJaA9DCPCHn//eoHFAlIaUUpRoFU1bAWgWR0CtL96jnFHbdX2UKGgGaAloD0MITrSrkPLDXUCUhpRSlGgVTegDaBZHQK0wfnZkCmx1fZQoaAZoCWgPQwgSvCGNigNyQJSGlFKUaBVNDQFoFkdArTDscXFcZHV9lChoBmgJaA9DCJ0QOugST19AlIaUUpRoFU3oA2gWR0CtMazySV4YdX2UKGgGaAloD0MIFygpsIDhckCUhpRSlGgVTXEBaBZHQK0yNZ8KG+N1fZQoaAZoCWgPQwi0y7c+rFJwQJSGlFKUaBVNEgFoFkdArTI7Zi/fwnV9lChoBmgJaA9DCMLZrWVyD3FAlIaUUpRoFU0fAWgWR0CtMlOKfnOjdX2UKGgGaAloD0MI5Nu7Bn32bUCUhpRSlGgVTRABaBZHQK0yjZOBUaR1fZQoaAZoCWgPQwjaVN0jm1M0QJSGlFKUaBVL/mgWR0CtMrBCD28JdX2UKGgGaAloD0MILVqAtlWpcECUhpRSlGgVTQIBaBZHQK0y26CDmKZ1fZQoaAZoCWgPQwhi2jf3l8BwQJSGlFKUaBVNJQFoFkdArTNhsj3VTnV9lChoBmgJaA9DCIhlM4fkJnJAlIaUUpRoFU1CAWgWR0CtM9d1EE1VdX2UKGgGaAloD0MIxxLWxthkbkCUhpRSlGgVTQMBaBZHQK0z4QA+6iF1fZQoaAZoCWgPQwibcK/M2wVtQJSGlFKUaBVNMQFoFkdArTRNie/Ya3V9lChoBmgJaA9DCGcPtALDOGlAlIaUUpRoFU0KAWgWR0CtNL8IZ62OdX2UKGgGaAloD0MIiIVa0zwJbkCUhpRSlGgVTQABaBZHQK02nY5ksjF1fZQoaAZoCWgPQwhNZrytdCxyQJSGlFKUaBVNJQFoFkdArTeQfCAMD3V9lChoBmgJaA9DCN4f71VrgnBAlIaUUpRoFU0SAWgWR0CtN+hq0tyxdX2UKGgGaAloD0MIzR39L9fCMECUhpRSlGgVS/VoFkdArTgDImw7knV9lChoBmgJaA9DCEwW9x9ZZ3BAlIaUUpRoFU07AWgWR0CtOFGsFMZhdX2UKGgGaAloD0MIVK2FWeiKbUCUhpRSlGgVTT4CaBZHQK04p+zdDY11fZQoaAZoCWgPQwiI9NvXgSFtQJSGlFKUaBVNCgFoFkdArTkNgWrOq3V9lChoBmgJaA9DCL+dRIR/+m5AlIaUUpRoFU3HAWgWR0CtO3Tgdfb9dX2UKGgGaAloD0MI+gs9YvSHcUCUhpRSlGgVTVkBaBZHQK070x20Re11fZQoaAZoCWgPQwgyWdx/ZAxhQJSGlFKUaBVN6ANoFkdArTvaaTfR/nV9lChoBmgJaA9DCDPDRlm/gG1AlIaUUpRoFU0UAWgWR0CtPHfVAiV0dX2UKGgGaAloD0MIYmh1coZBb0CUhpRSlGgVTQ4BaBZHQK09RyxRl6J1fZQoaAZoCWgPQwh4KuCeZwJwQJSGlFKUaBVNIwFoFkdArT48C7sfJXV9lChoBmgJaA9DCM/0EmMZt3BAlIaUUpRoFU0VAWgWR0CtPkIZydWidX2UKGgGaAloD0MIqP+s+THccECUhpRSlGgVTTMBaBZHQK0+eZBsyi51fZQoaAZoCWgPQwiQaAJFrHNwQJSGlFKUaBVNCAFoFkdArT7EbHZK4HV9lChoBmgJaA9DCGQjEK9rB3JAlIaUUpRoFU11AWgWR0CtQLb9hqj8dX2UKGgGaAloD0MIXoWUnxRZcECUhpRSlGgVTW8CaBZHQK1Awukk8ih1fZQoaAZoCWgPQwi54uKoXDtsQJSGlFKUaBVNAwFoFkdArUF6EeyRjnV9lChoBmgJaA9DCEMc6+I2Xl1AlIaUUpRoFU3oA2gWR0CtQotXYDkmdX2UKGgGaAloD0MICoMyjSZOb0CUhpRSlGgVTR4BaBZHQK1CyiwjdHl1fZQoaAZoCWgPQwiERxtHLLZvQJSGlFKUaBVNIwFoFkdArUPLaPCEYnV9lChoBmgJaA9DCBi1+1UAgmxAlIaUUpRoFU0SAWgWR0CtRGBtUGVzdX2UKGgGaAloD0MIAhHiytkycECUhpRSlGgVS/xoFkdArURtC1JDmnV9lChoBmgJaA9DCPfN/dVjPGJAlIaUUpRoFU3oA2gWR0CtRSVWS2YwdX2UKGgGaAloD0MI4pS5+cbTcECUhpRSlGgVTVkBaBZHQK1F8dOqNqB1fZQoaAZoCWgPQwgp6WFoddVcQJSGlFKUaBVN6ANoFkdArUYkGFBY3nV9lChoBmgJaA9DCLOZQ1ILYmFAlIaUUpRoFU3oA2gWR0CtRsiS7oStdX2UKGgGaAloD0MIXfksz8N+cECUhpRSlGgVS/BoFkdArUbI1m8M/nV9lChoBmgJaA9DCMfa39keLXBAlIaUUpRoFU1CAWgWR0CtR6wKSgXedX2UKGgGaAloD0MIUYiAQ6hXcECUhpRSlGgVS/VoFkdArUftvS+g13V9lChoBmgJaA9DCKzI6IAkPHFAlIaUUpRoFU1mAWgWR0CtSEheokzHdX2UKGgGaAloD0MI9z/AWjWHcECUhpRSlGgVTSQBaBZHQK1Ilu/Dcdp1fZQoaAZoCWgPQwh5zhYQ2lhvQJSGlFKUaBVL+GgWR0CtSL5ha1TjdX2UKGgGaAloD0MIsW1RZoM0XECUhpRSlGgVTegDaBZHQK1JH2r4nF51fZQoaAZoCWgPQwjQmEnUCx5uQJSGlFKUaBVNAQFoFkdArUlVvddmhHV9lChoBmgJaA9DCPQZUG/GFm1AlIaUUpRoFU2PAmgWR0CtSYlCswL3dX2UKGgGaAloD0MIZhL1go+QcECUhpRSlGgVTRYBaBZHQK1Jn2t+1Bt1fZQoaAZoCWgPQwhighq+hfVEQJSGlFKUaBVL9mgWR0CtSjFB6a9cdX2UKGgGaAloD0MIiEz5EFTnQECUhpRSlGgVS/hoFkdArUpgoNNJv3V9lChoBmgJaA9DCFeUEoKVhHBAlIaUUpRoFUv3aBZHQK1K3JkoWpJ1fZQoaAZoCWgPQwgw8x38xN5uQJSGlFKUaBVL92gWR0CtTEhOHnEEdX2UKGgGaAloD0MI21IHeb3bcECUhpRSlGgVS/FoFkdArUyCntOVPnV9lChoBmgJaA9DCJIlcywv73BAlIaUUpRoFU0gAWgWR0CtTLOXeFcqdX2UKGgGaAloD0MIK061FmaacECUhpRSlGgVTUUBaBZHQK1NJuuzQeF1fZQoaAZoCWgPQwhmMbH5OG5vQJSGlFKUaBVNGQFoFkdArU11qzqrzXV9lChoBmgJaA9DCEJD/wQXq2tAlIaUUpRoFUvzaBZHQK1Nxrs0HhV1fZQoaAZoCWgPQwhIUtLDUG9vQJSGlFKUaBVNEgFoFkdArU495OafBnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 224,
79
+ "n_steps": 2048,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_lunar_2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e725e0dd82544fad331338d06dc34497d242ee337d1fe56144c217b30ccc466
3
+ size 84893
ppo_lunar_2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4433323ead8e3da3c57a9612b2b379de9f981592348c82efb18ea61797587af
3
+ size 43201
ppo_lunar_2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_lunar_2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:953d6d37658f2047889bab15bbfa48eadcdd2617aa3701188dede0803da73d6b
3
- size 216527
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5f74ef2c9eef0510cf11fbc7218368051498e30ee4c3bbacb24f4d4e5b64edb
3
+ size 221561
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 174.8613051212219, "std_reward": 75.99066111189761, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T10:33:27.828072"}
 
1
+ {"mean_reward": 262.5964272138868, "std_reward": 17.01515898644443, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T10:51:58.769800"}