nielsbantilan commited on
Commit
1aa01d1
1 Parent(s): c0dc2b5

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -41,3 +41,11 @@ flytek6j4vh44/local_flytekit/b3abf2788c219ecf383e0ae59ed8b535/00000 filter=lfs d
41
  flyteknfii7qb/local_flytekit/52ebc6e9298c73dfffdc9f2fffeabb0e/00000 filter=lfs diff=lfs merge=lfs -text
42
  flytem4no92qv/local_flytekit/02d908a57a7bd02757ee87b4326523e8/00000 filter=lfs diff=lfs merge=lfs -text
43
  flytep9efi7h3/local_flytekit/ae679064ecc696d6e9c73a37fdb3edd8/00000 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
41
  flyteknfii7qb/local_flytekit/52ebc6e9298c73dfffdc9f2fffeabb0e/00000 filter=lfs diff=lfs merge=lfs -text
42
  flytem4no92qv/local_flytekit/02d908a57a7bd02757ee87b4326523e8/00000 filter=lfs diff=lfs merge=lfs -text
43
  flytep9efi7h3/local_flytekit/ae679064ecc696d6e9c73a37fdb3edd8/00000 filter=lfs diff=lfs merge=lfs -text
44
+ flyte6a_2j95z/local_flytekit/2c23843e4a45ae5249c43c2c168a9827/00000 filter=lfs diff=lfs merge=lfs -text
45
+ flyte9y8545zr/local_flytekit/4da14b1253b8076f6a95a51b0669110b/00000 filter=lfs diff=lfs merge=lfs -text
46
+ flyteeopmp26r/local_flytekit/8ed8cade608dc55fe9aaec6dd8d60c20/00000 filter=lfs diff=lfs merge=lfs -text
47
+ flyteg7cwhdqx/local_flytekit/45e4b36c3a0889b39fe253c6b3c94b2f/00000 filter=lfs diff=lfs merge=lfs -text
48
+ flyteraquk0cj/local_flytekit/776069c6405df68fd2755ce257e952ba/00000 filter=lfs diff=lfs merge=lfs -text
49
+ flyterpqo54fv/local_flytekit/fd49b76dd3b1ffbc62b1efcef00fd674/00000 filter=lfs diff=lfs merge=lfs -text
50
+ flyteyao8jgm7/local_flytekit/67696dba0a579df645b5b2f987a9e4b9/00000 filter=lfs diff=lfs merge=lfs -text
51
+ flyteyfv3rs04/local_flytekit/65aa521dee1e8da3c795348937da23ed/00000 filter=lfs diff=lfs merge=lfs -text
flyte6a_2j95z/local_flytekit/2c23843e4a45ae5249c43c2c168a9827/00000 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
3
+ size 133886409
flyte9y8545zr/local_flytekit/4da14b1253b8076f6a95a51b0669110b/00000 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
3
+ size 133886409
flyte_training_config.json CHANGED
@@ -1 +1 @@
1
- {"base_model": "meta-llama/Llama-2-7b-hf", "data_path": "wikipedia", "data_name": "20220301.simple", "num_epochs": 1, "max_steps": 30, "learning_rate": 2e-05, "weight_decay": 0.02, "warmup_ratio": 0.03, "lr_scheduler_type": "cosine", "batch_size": 4, "micro_batch_size": 1, "val_set_size": 0, "group_by_length": false, "instruction_key": "instruction", "input_key": "input", "output_key": "output", "device_map": "auto", "cache_dir": null, "optim": "adamw_torch", "model_max_length": 512, "debug_mode": false, "debug_train_data_size": 1024, "wandb_project": ""}
 
1
+ {"base_model": "meta-llama/Llama-2-7b-hf", "data_path": "wikipedia", "data_name": "20220301.simple", "num_epochs": 1, "max_steps": 100, "learning_rate": 2e-05, "weight_decay": 0.02, "warmup_ratio": 0.03, "lr_scheduler_type": "cosine", "batch_size": 4, "micro_batch_size": 1, "val_set_size": 0, "group_by_length": false, "instruction_key": "instruction", "input_key": "input", "output_key": "output", "device_map": "auto", "cache_dir": null, "optim": "adamw_torch", "model_max_length": 512, "debug_mode": false, "debug_train_data_size": 1024, "wandb_project": ""}
flyteeopmp26r/local_flytekit/8ed8cade608dc55fe9aaec6dd8d60c20/00000 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
3
+ size 133886409
flyteg7cwhdqx/local_flytekit/45e4b36c3a0889b39fe253c6b3c94b2f/00000 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
3
+ size 133886409
flyteraquk0cj/local_flytekit/776069c6405df68fd2755ce257e952ba/00000 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
3
+ size 133886409
flyterpqo54fv/local_flytekit/fd49b76dd3b1ffbc62b1efcef00fd674/00000 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
3
+ size 133886409
flyteyao8jgm7/local_flytekit/67696dba0a579df645b5b2f987a9e4b9/00000 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
3
+ size 133886409
flyteyfv3rs04/local_flytekit/65aa521dee1e8da3c795348937da23ed/00000 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
3
+ size 133886409
pytorch_model-00001-of-00003.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:717aa6c5a9ebb23eee5bea4b43851739a7d682236bc51e101b2765a30e048a78
3
  size 9877982386
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0edb9f1a102ad6501ee570b17824779e345dad58fa4c0fee69b413296923668b
3
  size 9877982386
pytorch_model-00002-of-00003.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8ef52dafc8593a489a56cef5484997b03f7c429d36d19523e3b7b7c73481ce5f
3
  size 9894793766
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0210300fa233e838ff00964ab3e48ed9d867c21001e52949992e0ec55ed3cff
3
  size 9894793766
pytorch_model-00003-of-00003.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d0f6c03132289fc1e002046889f735e28e7d4503a8134e07f1e4e7e5a94fcdb8
3
  size 7180985861
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9608bedcb9fd77131a6d81629f8caddaa607b616ac9440b5f1b515bb1a705db
3
  size 7180985861
tmp2uwb6tgl/_remote_module_non_scriptable.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+ import torch
4
+ import torch.distributed.rpc as rpc
5
+ from torch import Tensor
6
+ from torch._jit_internal import Future
7
+ from torch.distributed.rpc import RRef
8
+ from typing import Tuple # pyre-ignore: unused import
9
+
10
+
11
+ module_interface_cls = None
12
+
13
+
14
+ def forward_async(self, *args, **kwargs):
15
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
16
+ kwargs = {**kwargs}
17
+ return rpc.rpc_async(
18
+ self.module_rref.owner(),
19
+ _remote_forward,
20
+ args,
21
+ kwargs,
22
+ )
23
+
24
+
25
+ def forward(self, *args, **kwargs):
26
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
27
+ kwargs = {**kwargs}
28
+ ret_fut = rpc.rpc_async(
29
+ self.module_rref.owner(),
30
+ _remote_forward,
31
+ args,
32
+ kwargs,
33
+ )
34
+ return ret_fut.wait()
35
+
36
+
37
+ _generated_methods = [
38
+ forward_async,
39
+ forward,
40
+ ]
41
+
42
+
43
+
44
+
45
+ def _remote_forward(
46
+ module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
47
+ module = module_rref.local_value()
48
+ device = torch.device(device)
49
+
50
+ if device.type != "cuda":
51
+ return module.forward(*args, **kwargs)
52
+
53
+ # If the module is on a cuda device,
54
+ # move any CPU tensor in args or kwargs to the same cuda device.
55
+ # Since torch script does not support generator expression,
56
+ # have to use concatenation instead of
57
+ # ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
58
+ args = (*args,)
59
+ out_args: Tuple[()] = ()
60
+ for arg in args:
61
+ arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
62
+ out_args = out_args + arg
63
+
64
+ kwargs = {**kwargs}
65
+ for k, v in kwargs.items():
66
+ if isinstance(v, Tensor):
67
+ kwargs[k] = kwargs[k].to(device)
68
+
69
+ if is_device_map_set:
70
+ return module.forward(*out_args, **kwargs)
71
+
72
+ # If the device map is empty, then only CPU tensors are allowed to send over wire,
73
+ # so have to move any GPU tensor to CPU in the output.
74
+ # Since torch script does not support generator expression,
75
+ # have to use concatenation instead of
76
+ # ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
77
+ ret: Tuple[()] = ()
78
+ for i in module.forward(*out_args, **kwargs):
79
+ i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
80
+ ret = ret + i
81
+ return ret
tmp5210xtp5/_remote_module_non_scriptable.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+ import torch
4
+ import torch.distributed.rpc as rpc
5
+ from torch import Tensor
6
+ from torch._jit_internal import Future
7
+ from torch.distributed.rpc import RRef
8
+ from typing import Tuple # pyre-ignore: unused import
9
+
10
+
11
+ module_interface_cls = None
12
+
13
+
14
+ def forward_async(self, *args, **kwargs):
15
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
16
+ kwargs = {**kwargs}
17
+ return rpc.rpc_async(
18
+ self.module_rref.owner(),
19
+ _remote_forward,
20
+ args,
21
+ kwargs,
22
+ )
23
+
24
+
25
+ def forward(self, *args, **kwargs):
26
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
27
+ kwargs = {**kwargs}
28
+ ret_fut = rpc.rpc_async(
29
+ self.module_rref.owner(),
30
+ _remote_forward,
31
+ args,
32
+ kwargs,
33
+ )
34
+ return ret_fut.wait()
35
+
36
+
37
+ _generated_methods = [
38
+ forward_async,
39
+ forward,
40
+ ]
41
+
42
+
43
+
44
+
45
+ def _remote_forward(
46
+ module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
47
+ module = module_rref.local_value()
48
+ device = torch.device(device)
49
+
50
+ if device.type != "cuda":
51
+ return module.forward(*args, **kwargs)
52
+
53
+ # If the module is on a cuda device,
54
+ # move any CPU tensor in args or kwargs to the same cuda device.
55
+ # Since torch script does not support generator expression,
56
+ # have to use concatenation instead of
57
+ # ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
58
+ args = (*args,)
59
+ out_args: Tuple[()] = ()
60
+ for arg in args:
61
+ arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
62
+ out_args = out_args + arg
63
+
64
+ kwargs = {**kwargs}
65
+ for k, v in kwargs.items():
66
+ if isinstance(v, Tensor):
67
+ kwargs[k] = kwargs[k].to(device)
68
+
69
+ if is_device_map_set:
70
+ return module.forward(*out_args, **kwargs)
71
+
72
+ # If the device map is empty, then only CPU tensors are allowed to send over wire,
73
+ # so have to move any GPU tensor to CPU in the output.
74
+ # Since torch script does not support generator expression,
75
+ # have to use concatenation instead of
76
+ # ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
77
+ ret: Tuple[()] = ()
78
+ for i in module.forward(*out_args, **kwargs):
79
+ i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
80
+ ret = ret + i
81
+ return ret
tmp9bh3sdsi/_remote_module_non_scriptable.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+ import torch
4
+ import torch.distributed.rpc as rpc
5
+ from torch import Tensor
6
+ from torch._jit_internal import Future
7
+ from torch.distributed.rpc import RRef
8
+ from typing import Tuple # pyre-ignore: unused import
9
+
10
+
11
+ module_interface_cls = None
12
+
13
+
14
+ def forward_async(self, *args, **kwargs):
15
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
16
+ kwargs = {**kwargs}
17
+ return rpc.rpc_async(
18
+ self.module_rref.owner(),
19
+ _remote_forward,
20
+ args,
21
+ kwargs,
22
+ )
23
+
24
+
25
+ def forward(self, *args, **kwargs):
26
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
27
+ kwargs = {**kwargs}
28
+ ret_fut = rpc.rpc_async(
29
+ self.module_rref.owner(),
30
+ _remote_forward,
31
+ args,
32
+ kwargs,
33
+ )
34
+ return ret_fut.wait()
35
+
36
+
37
+ _generated_methods = [
38
+ forward_async,
39
+ forward,
40
+ ]
41
+
42
+
43
+
44
+
45
+ def _remote_forward(
46
+ module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
47
+ module = module_rref.local_value()
48
+ device = torch.device(device)
49
+
50
+ if device.type != "cuda":
51
+ return module.forward(*args, **kwargs)
52
+
53
+ # If the module is on a cuda device,
54
+ # move any CPU tensor in args or kwargs to the same cuda device.
55
+ # Since torch script does not support generator expression,
56
+ # have to use concatenation instead of
57
+ # ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
58
+ args = (*args,)
59
+ out_args: Tuple[()] = ()
60
+ for arg in args:
61
+ arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
62
+ out_args = out_args + arg
63
+
64
+ kwargs = {**kwargs}
65
+ for k, v in kwargs.items():
66
+ if isinstance(v, Tensor):
67
+ kwargs[k] = kwargs[k].to(device)
68
+
69
+ if is_device_map_set:
70
+ return module.forward(*out_args, **kwargs)
71
+
72
+ # If the device map is empty, then only CPU tensors are allowed to send over wire,
73
+ # so have to move any GPU tensor to CPU in the output.
74
+ # Since torch script does not support generator expression,
75
+ # have to use concatenation instead of
76
+ # ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
77
+ ret: Tuple[()] = ()
78
+ for i in module.forward(*out_args, **kwargs):
79
+ i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
80
+ ret = ret + i
81
+ return ret
tmphrsaxah2/_remote_module_non_scriptable.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+ import torch
4
+ import torch.distributed.rpc as rpc
5
+ from torch import Tensor
6
+ from torch._jit_internal import Future
7
+ from torch.distributed.rpc import RRef
8
+ from typing import Tuple # pyre-ignore: unused import
9
+
10
+
11
+ module_interface_cls = None
12
+
13
+
14
+ def forward_async(self, *args, **kwargs):
15
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
16
+ kwargs = {**kwargs}
17
+ return rpc.rpc_async(
18
+ self.module_rref.owner(),
19
+ _remote_forward,
20
+ args,
21
+ kwargs,
22
+ )
23
+
24
+
25
+ def forward(self, *args, **kwargs):
26
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
27
+ kwargs = {**kwargs}
28
+ ret_fut = rpc.rpc_async(
29
+ self.module_rref.owner(),
30
+ _remote_forward,
31
+ args,
32
+ kwargs,
33
+ )
34
+ return ret_fut.wait()
35
+
36
+
37
+ _generated_methods = [
38
+ forward_async,
39
+ forward,
40
+ ]
41
+
42
+
43
+
44
+
45
+ def _remote_forward(
46
+ module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
47
+ module = module_rref.local_value()
48
+ device = torch.device(device)
49
+
50
+ if device.type != "cuda":
51
+ return module.forward(*args, **kwargs)
52
+
53
+ # If the module is on a cuda device,
54
+ # move any CPU tensor in args or kwargs to the same cuda device.
55
+ # Since torch script does not support generator expression,
56
+ # have to use concatenation instead of
57
+ # ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
58
+ args = (*args,)
59
+ out_args: Tuple[()] = ()
60
+ for arg in args:
61
+ arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
62
+ out_args = out_args + arg
63
+
64
+ kwargs = {**kwargs}
65
+ for k, v in kwargs.items():
66
+ if isinstance(v, Tensor):
67
+ kwargs[k] = kwargs[k].to(device)
68
+
69
+ if is_device_map_set:
70
+ return module.forward(*out_args, **kwargs)
71
+
72
+ # If the device map is empty, then only CPU tensors are allowed to send over wire,
73
+ # so have to move any GPU tensor to CPU in the output.
74
+ # Since torch script does not support generator expression,
75
+ # have to use concatenation instead of
76
+ # ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
77
+ ret: Tuple[()] = ()
78
+ for i in module.forward(*out_args, **kwargs):
79
+ i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
80
+ ret = ret + i
81
+ return ret
tmpi_fed6hf/_remote_module_non_scriptable.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+ import torch
4
+ import torch.distributed.rpc as rpc
5
+ from torch import Tensor
6
+ from torch._jit_internal import Future
7
+ from torch.distributed.rpc import RRef
8
+ from typing import Tuple # pyre-ignore: unused import
9
+
10
+
11
+ module_interface_cls = None
12
+
13
+
14
+ def forward_async(self, *args, **kwargs):
15
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
16
+ kwargs = {**kwargs}
17
+ return rpc.rpc_async(
18
+ self.module_rref.owner(),
19
+ _remote_forward,
20
+ args,
21
+ kwargs,
22
+ )
23
+
24
+
25
+ def forward(self, *args, **kwargs):
26
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
27
+ kwargs = {**kwargs}
28
+ ret_fut = rpc.rpc_async(
29
+ self.module_rref.owner(),
30
+ _remote_forward,
31
+ args,
32
+ kwargs,
33
+ )
34
+ return ret_fut.wait()
35
+
36
+
37
+ _generated_methods = [
38
+ forward_async,
39
+ forward,
40
+ ]
41
+
42
+
43
+
44
+
45
+ def _remote_forward(
46
+ module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
47
+ module = module_rref.local_value()
48
+ device = torch.device(device)
49
+
50
+ if device.type != "cuda":
51
+ return module.forward(*args, **kwargs)
52
+
53
+ # If the module is on a cuda device,
54
+ # move any CPU tensor in args or kwargs to the same cuda device.
55
+ # Since torch script does not support generator expression,
56
+ # have to use concatenation instead of
57
+ # ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
58
+ args = (*args,)
59
+ out_args: Tuple[()] = ()
60
+ for arg in args:
61
+ arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
62
+ out_args = out_args + arg
63
+
64
+ kwargs = {**kwargs}
65
+ for k, v in kwargs.items():
66
+ if isinstance(v, Tensor):
67
+ kwargs[k] = kwargs[k].to(device)
68
+
69
+ if is_device_map_set:
70
+ return module.forward(*out_args, **kwargs)
71
+
72
+ # If the device map is empty, then only CPU tensors are allowed to send over wire,
73
+ # so have to move any GPU tensor to CPU in the output.
74
+ # Since torch script does not support generator expression,
75
+ # have to use concatenation instead of
76
+ # ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
77
+ ret: Tuple[()] = ()
78
+ for i in module.forward(*out_args, **kwargs):
79
+ i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
80
+ ret = ret + i
81
+ return ret
tmpn7s2kko7/_remote_module_non_scriptable.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+ import torch
4
+ import torch.distributed.rpc as rpc
5
+ from torch import Tensor
6
+ from torch._jit_internal import Future
7
+ from torch.distributed.rpc import RRef
8
+ from typing import Tuple # pyre-ignore: unused import
9
+
10
+
11
+ module_interface_cls = None
12
+
13
+
14
+ def forward_async(self, *args, **kwargs):
15
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
16
+ kwargs = {**kwargs}
17
+ return rpc.rpc_async(
18
+ self.module_rref.owner(),
19
+ _remote_forward,
20
+ args,
21
+ kwargs,
22
+ )
23
+
24
+
25
+ def forward(self, *args, **kwargs):
26
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
27
+ kwargs = {**kwargs}
28
+ ret_fut = rpc.rpc_async(
29
+ self.module_rref.owner(),
30
+ _remote_forward,
31
+ args,
32
+ kwargs,
33
+ )
34
+ return ret_fut.wait()
35
+
36
+
37
+ _generated_methods = [
38
+ forward_async,
39
+ forward,
40
+ ]
41
+
42
+
43
+
44
+
45
+ def _remote_forward(
46
+ module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
47
+ module = module_rref.local_value()
48
+ device = torch.device(device)
49
+
50
+ if device.type != "cuda":
51
+ return module.forward(*args, **kwargs)
52
+
53
+ # If the module is on a cuda device,
54
+ # move any CPU tensor in args or kwargs to the same cuda device.
55
+ # Since torch script does not support generator expression,
56
+ # have to use concatenation instead of
57
+ # ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
58
+ args = (*args,)
59
+ out_args: Tuple[()] = ()
60
+ for arg in args:
61
+ arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
62
+ out_args = out_args + arg
63
+
64
+ kwargs = {**kwargs}
65
+ for k, v in kwargs.items():
66
+ if isinstance(v, Tensor):
67
+ kwargs[k] = kwargs[k].to(device)
68
+
69
+ if is_device_map_set:
70
+ return module.forward(*out_args, **kwargs)
71
+
72
+ # If the device map is empty, then only CPU tensors are allowed to send over wire,
73
+ # so have to move any GPU tensor to CPU in the output.
74
+ # Since torch script does not support generator expression,
75
+ # have to use concatenation instead of
76
+ # ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
77
+ ret: Tuple[()] = ()
78
+ for i in module.forward(*out_args, **kwargs):
79
+ i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
80
+ ret = ret + i
81
+ return ret
tmptwgnkwb4/__pycache__/_remote_module_non_scriptable.cpython-310.pyc ADDED
Binary file (1.5 kB). View file
 
tmptwgnkwb4/_remote_module_non_scriptable.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+ import torch
4
+ import torch.distributed.rpc as rpc
5
+ from torch import Tensor
6
+ from torch._jit_internal import Future
7
+ from torch.distributed.rpc import RRef
8
+ from typing import Tuple # pyre-ignore: unused import
9
+
10
+
11
+ module_interface_cls = None
12
+
13
+
14
+ def forward_async(self, *args, **kwargs):
15
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
16
+ kwargs = {**kwargs}
17
+ return rpc.rpc_async(
18
+ self.module_rref.owner(),
19
+ _remote_forward,
20
+ args,
21
+ kwargs,
22
+ )
23
+
24
+
25
+ def forward(self, *args, **kwargs):
26
+ args = (self.module_rref, self.device, self.is_device_map_set, *args)
27
+ kwargs = {**kwargs}
28
+ ret_fut = rpc.rpc_async(
29
+ self.module_rref.owner(),
30
+ _remote_forward,
31
+ args,
32
+ kwargs,
33
+ )
34
+ return ret_fut.wait()
35
+
36
+
37
+ _generated_methods = [
38
+ forward_async,
39
+ forward,
40
+ ]
41
+
42
+
43
+
44
+
45
+ def _remote_forward(
46
+ module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
47
+ module = module_rref.local_value()
48
+ device = torch.device(device)
49
+
50
+ if device.type != "cuda":
51
+ return module.forward(*args, **kwargs)
52
+
53
+ # If the module is on a cuda device,
54
+ # move any CPU tensor in args or kwargs to the same cuda device.
55
+ # Since torch script does not support generator expression,
56
+ # have to use concatenation instead of
57
+ # ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
58
+ args = (*args,)
59
+ out_args: Tuple[()] = ()
60
+ for arg in args:
61
+ arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
62
+ out_args = out_args + arg
63
+
64
+ kwargs = {**kwargs}
65
+ for k, v in kwargs.items():
66
+ if isinstance(v, Tensor):
67
+ kwargs[k] = kwargs[k].to(device)
68
+
69
+ if is_device_map_set:
70
+ return module.forward(*out_args, **kwargs)
71
+
72
+ # If the device map is empty, then only CPU tensors are allowed to send over wire,
73
+ # so have to move any GPU tensor to CPU in the output.
74
+ # Since torch script does not support generator expression,
75
+ # have to use concatenation instead of
76
+ # ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
77
+ ret: Tuple[()] = ()
78
+ for i in module.forward(*out_args, **kwargs):
79
+ i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
80
+ ret = ret + i
81
+ return ret
trainer_state.json CHANGED
@@ -1,46 +1,628 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 13.333333333333334,
5
  "eval_steps": 500,
6
- "global_step": 30,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  {
12
  "epoch": 4.44,
13
  "learning_rate": 0,
14
- "loss": 1.7045,
15
  "step": 10
16
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  {
18
  "epoch": 8.89,
19
  "learning_rate": 2e-05,
20
- "loss": 1.6603,
21
  "step": 20
22
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  {
24
  "epoch": 13.33,
25
  "learning_rate": 2e-05,
26
- "loss": 0.9123,
27
  "step": 30
28
  },
29
  {
30
- "epoch": 13.33,
31
- "step": 30,
32
- "total_flos": 2021822300160.0,
33
- "train_loss": 1.4256969451904298,
34
- "train_runtime": 3249.3879,
35
- "train_samples_per_second": 0.886,
36
- "train_steps_per_second": 0.009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  }
38
  ],
39
- "logging_steps": 10,
40
- "max_steps": 30,
41
- "num_train_epochs": 15,
42
  "save_steps": 200,
43
- "total_flos": 2021822300160.0,
44
  "trial_name": null,
45
  "trial_params": null
46
  }
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 44.44444444444444,
5
  "eval_steps": 500,
6
+ "global_step": 100,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
+ {
12
+ "epoch": 0.44,
13
+ "learning_rate": 0,
14
+ "loss": 1.7341,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.89,
19
+ "learning_rate": 0,
20
+ "loss": 1.7223,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 1.33,
25
+ "learning_rate": 0,
26
+ "loss": 1.7608,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 1.78,
31
+ "learning_rate": 0,
32
+ "loss": 1.7115,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 2.22,
37
+ "learning_rate": 0,
38
+ "loss": 1.7181,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 2.67,
43
+ "learning_rate": 0,
44
+ "loss": 1.7022,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 3.11,
49
+ "learning_rate": 0,
50
+ "loss": 1.7242,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 3.56,
55
+ "learning_rate": 0,
56
+ "loss": 1.7352,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 4.0,
61
+ "learning_rate": 0,
62
+ "loss": 1.7181,
63
+ "step": 9
64
+ },
65
  {
66
  "epoch": 4.44,
67
  "learning_rate": 0,
68
+ "loss": 1.7213,
69
  "step": 10
70
  },
71
+ {
72
+ "epoch": 4.89,
73
+ "learning_rate": 0,
74
+ "loss": 1.6694,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 5.33,
79
+ "learning_rate": 0,
80
+ "loss": 1.7046,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 5.78,
85
+ "learning_rate": 0,
86
+ "loss": 1.7109,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 6.22,
91
+ "learning_rate": 0,
92
+ "loss": 1.6948,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 6.67,
97
+ "learning_rate": 0,
98
+ "loss": 1.6816,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 7.11,
103
+ "learning_rate": 0.0,
104
+ "loss": 1.6851,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 7.56,
109
+ "learning_rate": 1.2618595071429148e-05,
110
+ "loss": 1.6041,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 8.0,
115
+ "learning_rate": 2e-05,
116
+ "loss": 1.5208,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 8.44,
121
+ "learning_rate": 2e-05,
122
+ "loss": 1.4946,
123
+ "step": 19
124
+ },
125
  {
126
  "epoch": 8.89,
127
  "learning_rate": 2e-05,
128
+ "loss": 1.492,
129
  "step": 20
130
  },
131
+ {
132
+ "epoch": 9.33,
133
+ "learning_rate": 2e-05,
134
+ "loss": 1.4501,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 9.78,
139
+ "learning_rate": 2e-05,
140
+ "loss": 1.1894,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 10.22,
145
+ "learning_rate": 2e-05,
146
+ "loss": 1.1437,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 10.67,
151
+ "learning_rate": 2e-05,
152
+ "loss": 1.02,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 11.11,
157
+ "learning_rate": 2e-05,
158
+ "loss": 0.926,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 11.56,
163
+ "learning_rate": 2e-05,
164
+ "loss": 0.7794,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 12.0,
169
+ "learning_rate": 2e-05,
170
+ "loss": 0.7719,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 12.44,
175
+ "learning_rate": 2e-05,
176
+ "loss": 0.6107,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 12.89,
181
+ "learning_rate": 2e-05,
182
+ "loss": 0.633,
183
+ "step": 29
184
+ },
185
  {
186
  "epoch": 13.33,
187
  "learning_rate": 2e-05,
188
+ "loss": 0.4781,
189
  "step": 30
190
  },
191
  {
192
+ "epoch": 13.78,
193
+ "learning_rate": 2e-05,
194
+ "loss": 0.4379,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 14.22,
199
+ "learning_rate": 2e-05,
200
+ "loss": 0.3391,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 14.67,
205
+ "learning_rate": 2e-05,
206
+ "loss": 0.2928,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 15.11,
211
+ "learning_rate": 2e-05,
212
+ "loss": 0.2631,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 15.56,
217
+ "learning_rate": 2e-05,
218
+ "loss": 0.2399,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 16.0,
223
+ "learning_rate": 2e-05,
224
+ "loss": 0.2075,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 16.44,
229
+ "learning_rate": 2e-05,
230
+ "loss": 0.186,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 16.89,
235
+ "learning_rate": 2e-05,
236
+ "loss": 0.1782,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 17.33,
241
+ "learning_rate": 2e-05,
242
+ "loss": 0.144,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 17.78,
247
+ "learning_rate": 2e-05,
248
+ "loss": 0.1317,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 18.22,
253
+ "learning_rate": 2e-05,
254
+ "loss": 0.1144,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 18.67,
259
+ "learning_rate": 2e-05,
260
+ "loss": 0.1193,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 19.11,
265
+ "learning_rate": 2e-05,
266
+ "loss": 0.1161,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 19.56,
271
+ "learning_rate": 2e-05,
272
+ "loss": 0.0993,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 20.0,
277
+ "learning_rate": 2e-05,
278
+ "loss": 0.1083,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 20.44,
283
+ "learning_rate": 2e-05,
284
+ "loss": 0.101,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 20.89,
289
+ "learning_rate": 2e-05,
290
+ "loss": 0.1013,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 21.33,
295
+ "learning_rate": 2e-05,
296
+ "loss": 0.1066,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 21.78,
301
+ "learning_rate": 2e-05,
302
+ "loss": 0.1005,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 22.22,
307
+ "learning_rate": 2e-05,
308
+ "loss": 0.0882,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 22.67,
313
+ "learning_rate": 2e-05,
314
+ "loss": 0.1067,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 23.11,
319
+ "learning_rate": 2e-05,
320
+ "loss": 0.0797,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 23.56,
325
+ "learning_rate": 2e-05,
326
+ "loss": 0.0943,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 24.0,
331
+ "learning_rate": 2e-05,
332
+ "loss": 0.0769,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 24.44,
337
+ "learning_rate": 2e-05,
338
+ "loss": 0.0855,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 24.89,
343
+ "learning_rate": 2e-05,
344
+ "loss": 0.0735,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 25.33,
349
+ "learning_rate": 2e-05,
350
+ "loss": 0.0833,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 25.78,
355
+ "learning_rate": 2e-05,
356
+ "loss": 0.0811,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 26.22,
361
+ "learning_rate": 2e-05,
362
+ "loss": 0.0772,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 26.67,
367
+ "learning_rate": 2e-05,
368
+ "loss": 0.0721,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 27.11,
373
+ "learning_rate": 2e-05,
374
+ "loss": 0.0825,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 27.56,
379
+ "learning_rate": 2e-05,
380
+ "loss": 0.0758,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 28.0,
385
+ "learning_rate": 2e-05,
386
+ "loss": 0.0725,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 28.44,
391
+ "learning_rate": 2e-05,
392
+ "loss": 0.077,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 28.89,
397
+ "learning_rate": 2e-05,
398
+ "loss": 0.0654,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 29.33,
403
+ "learning_rate": 2e-05,
404
+ "loss": 0.0675,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 29.78,
409
+ "learning_rate": 2e-05,
410
+ "loss": 0.0772,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 30.22,
415
+ "learning_rate": 2e-05,
416
+ "loss": 0.0718,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 30.67,
421
+ "learning_rate": 2e-05,
422
+ "loss": 0.0625,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 31.11,
427
+ "learning_rate": 2e-05,
428
+ "loss": 0.0616,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 31.56,
433
+ "learning_rate": 2e-05,
434
+ "loss": 0.071,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 32.0,
439
+ "learning_rate": 2e-05,
440
+ "loss": 0.0655,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 32.44,
445
+ "learning_rate": 2e-05,
446
+ "loss": 0.0591,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 32.89,
451
+ "learning_rate": 2e-05,
452
+ "loss": 0.0669,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 33.33,
457
+ "learning_rate": 2e-05,
458
+ "loss": 0.0653,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 33.78,
463
+ "learning_rate": 2e-05,
464
+ "loss": 0.0662,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 34.22,
469
+ "learning_rate": 2e-05,
470
+ "loss": 0.0688,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 34.67,
475
+ "learning_rate": 2e-05,
476
+ "loss": 0.0498,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 35.11,
481
+ "learning_rate": 2e-05,
482
+ "loss": 0.0576,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 35.56,
487
+ "learning_rate": 2e-05,
488
+ "loss": 0.0737,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 36.0,
493
+ "learning_rate": 2e-05,
494
+ "loss": 0.0609,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 36.44,
499
+ "learning_rate": 2e-05,
500
+ "loss": 0.0594,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 36.89,
505
+ "learning_rate": 2e-05,
506
+ "loss": 0.0725,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 37.33,
511
+ "learning_rate": 2e-05,
512
+ "loss": 0.0598,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 37.78,
517
+ "learning_rate": 2e-05,
518
+ "loss": 0.0652,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 38.22,
523
+ "learning_rate": 2e-05,
524
+ "loss": 0.0588,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 38.67,
529
+ "learning_rate": 2e-05,
530
+ "loss": 0.0671,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 39.11,
535
+ "learning_rate": 2e-05,
536
+ "loss": 0.0596,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 39.56,
541
+ "learning_rate": 2e-05,
542
+ "loss": 0.0518,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 40.0,
547
+ "learning_rate": 2e-05,
548
+ "loss": 0.0612,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 40.44,
553
+ "learning_rate": 2e-05,
554
+ "loss": 0.0593,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 40.89,
559
+ "learning_rate": 2e-05,
560
+ "loss": 0.0521,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 41.33,
565
+ "learning_rate": 2e-05,
566
+ "loss": 0.0536,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 41.78,
571
+ "learning_rate": 2e-05,
572
+ "loss": 0.0548,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 42.22,
577
+ "learning_rate": 2e-05,
578
+ "loss": 0.0507,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 42.67,
583
+ "learning_rate": 2e-05,
584
+ "loss": 0.0588,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 43.11,
589
+ "learning_rate": 2e-05,
590
+ "loss": 0.0506,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 43.56,
595
+ "learning_rate": 2e-05,
596
+ "loss": 0.055,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 44.0,
601
+ "learning_rate": 2e-05,
602
+ "loss": 0.0503,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 44.44,
607
+ "learning_rate": 2e-05,
608
+ "loss": 0.054,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 44.44,
613
+ "step": 100,
614
+ "total_flos": 7478779576320.0,
615
+ "train_loss": 0.49326207719743254,
616
+ "train_runtime": 9902.4306,
617
+ "train_samples_per_second": 0.969,
618
+ "train_steps_per_second": 0.01
619
  }
620
  ],
621
+ "logging_steps": 1,
622
+ "max_steps": 100,
623
+ "num_train_epochs": 50,
624
  "save_steps": 200,
625
+ "total_flos": 7478779576320.0,
626
  "trial_name": null,
627
  "trial_params": null
628
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9ae75cc4463643d503efe9965d07a683ae889e7742c053abd5aa9e79876df4bf
3
  size 6523
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:135858efd4811a09b43593532cb735b8e0bee8450cc74446fdba3f0ec24a504a
3
  size 6523