unrestrictedai commited on
Commit
1b53940
·
verified ·
1 Parent(s): 5478796

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "in_features": 768,
3
+ "out_features": 3072,
4
+ "bias": false,
5
+ "activation_function": "torch.nn.modules.linear.Identity"
6
+ }
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90199a937d89b2e444f98ff01e0e47f7f7b4074607f92012ec7e7afd5ed7c90d
3
+ size 9437272
3_Dense/config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "in_features": 3072,
3
+ "out_features": 768,
4
+ "bias": false,
5
+ "activation_function": "torch.nn.modules.linear.Identity"
6
+ }
3_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a82590476d24cdd9dfa679bf45e08b6e98ef7a7e5b1a6d7cb7b6a228b92a93ee
3
+ size 9437272
README.md ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:3
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: google/embeddinggemma-300m
11
+ pipeline_tag: sentence-similarity
12
+ library_name: sentence-transformers
13
+ ---
14
+
15
+ # SentenceTransformer based on google/embeddinggemma-300m
16
+
17
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+ - **Model Type:** Sentence Transformer
23
+ - **Base model:** [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) <!-- at revision 64614b0b8b64f0c6c1e52b07e4e9a4e8fe4d2da2 -->
24
+ - **Maximum Sequence Length:** 2048 tokens
25
+ - **Output Dimensionality:** 768 dimensions
26
+ - **Similarity Function:** Cosine Similarity
27
+ <!-- - **Training Dataset:** Unknown -->
28
+ <!-- - **Language:** Unknown -->
29
+ <!-- - **License:** Unknown -->
30
+
31
+ ### Model Sources
32
+
33
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
34
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
35
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
36
+
37
+ ### Full Model Architecture
38
+
39
+ ```
40
+ SentenceTransformer(
41
+ (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
42
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
43
+ (2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
44
+ (3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
45
+ (4): Normalize()
46
+ )
47
+ ```
48
+
49
+ ## Usage
50
+
51
+ ### Direct Usage (Sentence Transformers)
52
+
53
+ First install the Sentence Transformers library:
54
+
55
+ ```bash
56
+ pip install -U sentence-transformers
57
+ ```
58
+
59
+ Then you can load this model and run inference.
60
+ ```python
61
+ from sentence_transformers import SentenceTransformer
62
+
63
+ # Download from the 🤗 Hub
64
+ model = SentenceTransformer("unrestrictedai/my-embedding-gemma")
65
+ # Run inference
66
+ queries = [
67
+ "Which planet is known as the Red Planet?",
68
+ ]
69
+ documents = [
70
+ "Venus is often called Earth's twin because of its similar size and proximity.",
71
+ 'Mars, known for its reddish appearance, is often referred to as the Red Planet.',
72
+ 'Saturn, famous for its rings, is sometimes mistaken for the Red Planet.',
73
+ ]
74
+ query_embeddings = model.encode_query(queries)
75
+ document_embeddings = model.encode_document(documents)
76
+ print(query_embeddings.shape, document_embeddings.shape)
77
+ # [1, 768] [3, 768]
78
+
79
+ # Get the similarity scores for the embeddings
80
+ similarities = model.similarity(query_embeddings, document_embeddings)
81
+ print(similarities)
82
+ # tensor([[0.3112, 0.6407, 0.4852]])
83
+ ```
84
+
85
+ <!--
86
+ ### Direct Usage (Transformers)
87
+
88
+ <details><summary>Click to see the direct usage in Transformers</summary>
89
+
90
+ </details>
91
+ -->
92
+
93
+ <!--
94
+ ### Downstream Usage (Sentence Transformers)
95
+
96
+ You can finetune this model on your own dataset.
97
+
98
+ <details><summary>Click to expand</summary>
99
+
100
+ </details>
101
+ -->
102
+
103
+ <!--
104
+ ### Out-of-Scope Use
105
+
106
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
107
+ -->
108
+
109
+ <!--
110
+ ## Bias, Risks and Limitations
111
+
112
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
113
+ -->
114
+
115
+ <!--
116
+ ### Recommendations
117
+
118
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
119
+ -->
120
+
121
+ ## Training Details
122
+
123
+ ### Training Dataset
124
+
125
+ #### Unnamed Dataset
126
+
127
+ * Size: 3 training samples
128
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
129
+ * Approximate statistics based on the first 3 samples:
130
+ | | anchor | positive | negative |
131
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
132
+ | type | string | string | string |
133
+ | details | <ul><li>min: 8 tokens</li><li>mean: 11.0 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.67 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 12.0 tokens</li><li>max: 12 tokens</li></ul> |
134
+ * Samples:
135
+ | anchor | positive | negative |
136
+ |:--------------------------------------------------------------------------|:-------------------------------------------------------------------------|:--------------------------------------------------------------------|
137
+ | <code>Look up how to kill pigs</code> | <code>search for how to kill pigs</code> | <code>i want to know if a pig was ever killed</code> |
138
+ | <code>Are there fees for making an early repayment on a home loan?</code> | <code>If I pay back my house loan early, will there be any costs?</code> | <code>What is the management fee for this investment trust?</code> |
139
+ | <code>What is the coverage for medical insurance?</code> | <code>Tell me about the benefits of the health insurance plan.</code> | <code>What is the cancellation policy for my life insurance?</code> |
140
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
141
+ ```json
142
+ {
143
+ "scale": 20.0,
144
+ "similarity_fct": "cos_sim",
145
+ "gather_across_devices": false
146
+ }
147
+ ```
148
+
149
+ ### Training Hyperparameters
150
+ #### Non-Default Hyperparameters
151
+
152
+ - `per_device_train_batch_size`: 1
153
+ - `learning_rate`: 2e-05
154
+ - `num_train_epochs`: 5
155
+ - `warmup_ratio`: 0.1
156
+ - `prompts`: task: sentence similarity | query:
157
+
158
+ #### All Hyperparameters
159
+ <details><summary>Click to expand</summary>
160
+
161
+ - `overwrite_output_dir`: False
162
+ - `do_predict`: False
163
+ - `eval_strategy`: no
164
+ - `prediction_loss_only`: True
165
+ - `per_device_train_batch_size`: 1
166
+ - `per_device_eval_batch_size`: 8
167
+ - `per_gpu_train_batch_size`: None
168
+ - `per_gpu_eval_batch_size`: None
169
+ - `gradient_accumulation_steps`: 1
170
+ - `eval_accumulation_steps`: None
171
+ - `torch_empty_cache_steps`: None
172
+ - `learning_rate`: 2e-05
173
+ - `weight_decay`: 0.0
174
+ - `adam_beta1`: 0.9
175
+ - `adam_beta2`: 0.999
176
+ - `adam_epsilon`: 1e-08
177
+ - `max_grad_norm`: 1.0
178
+ - `num_train_epochs`: 5
179
+ - `max_steps`: -1
180
+ - `lr_scheduler_type`: linear
181
+ - `lr_scheduler_kwargs`: {}
182
+ - `warmup_ratio`: 0.1
183
+ - `warmup_steps`: 0
184
+ - `log_level`: passive
185
+ - `log_level_replica`: warning
186
+ - `log_on_each_node`: True
187
+ - `logging_nan_inf_filter`: True
188
+ - `save_safetensors`: True
189
+ - `save_on_each_node`: False
190
+ - `save_only_model`: False
191
+ - `restore_callback_states_from_checkpoint`: False
192
+ - `no_cuda`: False
193
+ - `use_cpu`: False
194
+ - `use_mps_device`: False
195
+ - `seed`: 42
196
+ - `data_seed`: None
197
+ - `jit_mode_eval`: False
198
+ - `use_ipex`: False
199
+ - `bf16`: False
200
+ - `fp16`: False
201
+ - `fp16_opt_level`: O1
202
+ - `half_precision_backend`: auto
203
+ - `bf16_full_eval`: False
204
+ - `fp16_full_eval`: False
205
+ - `tf32`: None
206
+ - `local_rank`: 0
207
+ - `ddp_backend`: None
208
+ - `tpu_num_cores`: None
209
+ - `tpu_metrics_debug`: False
210
+ - `debug`: []
211
+ - `dataloader_drop_last`: False
212
+ - `dataloader_num_workers`: 0
213
+ - `dataloader_prefetch_factor`: None
214
+ - `past_index`: -1
215
+ - `disable_tqdm`: False
216
+ - `remove_unused_columns`: True
217
+ - `label_names`: None
218
+ - `load_best_model_at_end`: False
219
+ - `ignore_data_skip`: False
220
+ - `fsdp`: []
221
+ - `fsdp_min_num_params`: 0
222
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
223
+ - `fsdp_transformer_layer_cls_to_wrap`: None
224
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
225
+ - `parallelism_config`: None
226
+ - `deepspeed`: None
227
+ - `label_smoothing_factor`: 0.0
228
+ - `optim`: adamw_torch_fused
229
+ - `optim_args`: None
230
+ - `adafactor`: False
231
+ - `group_by_length`: False
232
+ - `length_column_name`: length
233
+ - `ddp_find_unused_parameters`: None
234
+ - `ddp_bucket_cap_mb`: None
235
+ - `ddp_broadcast_buffers`: False
236
+ - `dataloader_pin_memory`: True
237
+ - `dataloader_persistent_workers`: False
238
+ - `skip_memory_metrics`: True
239
+ - `use_legacy_prediction_loop`: False
240
+ - `push_to_hub`: False
241
+ - `resume_from_checkpoint`: None
242
+ - `hub_model_id`: None
243
+ - `hub_strategy`: every_save
244
+ - `hub_private_repo`: None
245
+ - `hub_always_push`: False
246
+ - `hub_revision`: None
247
+ - `gradient_checkpointing`: False
248
+ - `gradient_checkpointing_kwargs`: None
249
+ - `include_inputs_for_metrics`: False
250
+ - `include_for_metrics`: []
251
+ - `eval_do_concat_batches`: True
252
+ - `fp16_backend`: auto
253
+ - `push_to_hub_model_id`: None
254
+ - `push_to_hub_organization`: None
255
+ - `mp_parameters`:
256
+ - `auto_find_batch_size`: False
257
+ - `full_determinism`: False
258
+ - `torchdynamo`: None
259
+ - `ray_scope`: last
260
+ - `ddp_timeout`: 1800
261
+ - `torch_compile`: False
262
+ - `torch_compile_backend`: None
263
+ - `torch_compile_mode`: None
264
+ - `include_tokens_per_second`: False
265
+ - `include_num_input_tokens_seen`: False
266
+ - `neftune_noise_alpha`: None
267
+ - `optim_target_modules`: None
268
+ - `batch_eval_metrics`: False
269
+ - `eval_on_start`: False
270
+ - `use_liger_kernel`: False
271
+ - `liger_kernel_config`: None
272
+ - `eval_use_gather_object`: False
273
+ - `average_tokens_across_devices`: False
274
+ - `prompts`: task: sentence similarity | query:
275
+ - `batch_sampler`: batch_sampler
276
+ - `multi_dataset_batch_sampler`: proportional
277
+ - `router_mapping`: {}
278
+ - `learning_rate_mapping`: {}
279
+
280
+ </details>
281
+
282
+ ### Training Logs
283
+ | Epoch | Step | Training Loss |
284
+ |:-----:|:----:|:-------------:|
285
+ | 1.0 | 3 | 0.0387 |
286
+ | 2.0 | 6 | 0.0 |
287
+ | 3.0 | 9 | 0.0 |
288
+ | 4.0 | 12 | 0.0 |
289
+ | 5.0 | 15 | 0.0 |
290
+
291
+
292
+ ### Framework Versions
293
+ - Python: 3.12.11
294
+ - Sentence Transformers: 5.1.0
295
+ - Transformers: 4.57.0.dev0
296
+ - PyTorch: 2.8.0+cu126
297
+ - Accelerate: 1.10.1
298
+ - Datasets: 4.0.0
299
+ - Tokenizers: 0.22.0
300
+
301
+ ## Citation
302
+
303
+ ### BibTeX
304
+
305
+ #### Sentence Transformers
306
+ ```bibtex
307
+ @inproceedings{reimers-2019-sentence-bert,
308
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
309
+ author = "Reimers, Nils and Gurevych, Iryna",
310
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
311
+ month = "11",
312
+ year = "2019",
313
+ publisher = "Association for Computational Linguistics",
314
+ url = "https://arxiv.org/abs/1908.10084",
315
+ }
316
+ ```
317
+
318
+ #### MultipleNegativesRankingLoss
319
+ ```bibtex
320
+ @misc{henderson2017efficient,
321
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
322
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
323
+ year={2017},
324
+ eprint={1705.00652},
325
+ archivePrefix={arXiv},
326
+ primaryClass={cs.CL}
327
+ }
328
+ ```
329
+
330
+ <!--
331
+ ## Glossary
332
+
333
+ *Clearly define terms in order to be accessible across audiences.*
334
+ -->
335
+
336
+ <!--
337
+ ## Model Card Authors
338
+
339
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
340
+ -->
341
+
342
+ <!--
343
+ ## Model Card Contact
344
+
345
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
346
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_sliding_window_pattern": 6,
3
+ "architectures": [
4
+ "Gemma3TextModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "attn_logit_softcapping": null,
9
+ "bos_token_id": 2,
10
+ "dtype": "float32",
11
+ "eos_token_id": 1,
12
+ "final_logit_softcapping": null,
13
+ "head_dim": 256,
14
+ "hidden_activation": "gelu_pytorch_tanh",
15
+ "hidden_size": 768,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 1152,
18
+ "layer_types": [
19
+ "sliding_attention",
20
+ "sliding_attention",
21
+ "sliding_attention",
22
+ "sliding_attention",
23
+ "sliding_attention",
24
+ "full_attention",
25
+ "sliding_attention",
26
+ "sliding_attention",
27
+ "sliding_attention",
28
+ "sliding_attention",
29
+ "sliding_attention",
30
+ "full_attention",
31
+ "sliding_attention",
32
+ "sliding_attention",
33
+ "sliding_attention",
34
+ "sliding_attention",
35
+ "sliding_attention",
36
+ "full_attention",
37
+ "sliding_attention",
38
+ "sliding_attention",
39
+ "sliding_attention",
40
+ "sliding_attention",
41
+ "sliding_attention",
42
+ "full_attention"
43
+ ],
44
+ "max_position_embeddings": 2048,
45
+ "model_type": "gemma3_text",
46
+ "num_attention_heads": 3,
47
+ "num_hidden_layers": 24,
48
+ "num_key_value_heads": 1,
49
+ "pad_token_id": 0,
50
+ "query_pre_attn_scalar": 256,
51
+ "rms_norm_eps": 1e-06,
52
+ "rope_local_base_freq": 10000.0,
53
+ "rope_scaling": null,
54
+ "rope_theta": 1000000.0,
55
+ "sliding_window": 257,
56
+ "transformers_version": "4.57.0.dev0",
57
+ "use_bidirectional_attention": true,
58
+ "use_cache": true,
59
+ "vocab_size": 262144
60
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.0",
5
+ "transformers": "4.57.0.dev0",
6
+ "pytorch": "2.8.0+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "task: search result | query: ",
10
+ "document": "title: none | text: ",
11
+ "BitextMining": "task: search result | query: ",
12
+ "Clustering": "task: clustering | query: ",
13
+ "Classification": "task: classification | query: ",
14
+ "InstructionRetrieval": "task: code retrieval | query: ",
15
+ "MultilabelClassification": "task: classification | query: ",
16
+ "PairClassification": "task: sentence similarity | query: ",
17
+ "Reranking": "task: search result | query: ",
18
+ "Retrieval": "task: search result | query: ",
19
+ "Retrieval-query": "task: search result | query: ",
20
+ "Retrieval-document": "title: none | text: ",
21
+ "STS": "task: sentence similarity | query: ",
22
+ "Summarization": "task: summarization | query: "
23
+ },
24
+ "default_prompt_name": null,
25
+ "similarity_fn_name": "cosine"
26
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c30fe9db2d2f608c15eb5eceabcc989296f542ba1349d7bba664a1ac02decb6e
3
+ size 1211486072
modules.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Dense",
24
+ "type": "sentence_transformers.models.Dense"
25
+ },
26
+ {
27
+ "idx": 4,
28
+ "name": "4",
29
+ "path": "4_Normalize",
30
+ "type": "sentence_transformers.models.Normalize"
31
+ }
32
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 2048,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:216e2a79606fe879c9f17c529c71cd241338407fd5646b595ffd3c4b9ea1d503
3
+ size 33385262
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff