Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,76 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
language: sk
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- emotion-classification
|
6 |
+
- text-analysis
|
7 |
+
- machine-translation
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1-score
|
12 |
+
- accuracy
|
13 |
---
|
14 |
|
15 |
+
# Model Card for uvegesistvan/wildmann_german_proposal_2b_GER_ENG_SLO
|
16 |
+
|
17 |
+
## Model Overview
|
18 |
+
This model is a multi-class emotion classifier trained on German-to-English-to-Slovak machine-translated text data. It identifies nine distinct emotional states in text. The dataset combines synthetic and original German sentences translated sequentially into English and Slovak, presenting unique challenges and opportunities for cross-linguistic emotion classification.
|
19 |
+
|
20 |
+
### Emotion Classes
|
21 |
+
The model classifies the following emotional states:
|
22 |
+
|
23 |
+
- **Anger (0)**
|
24 |
+
- **Fear (1)**
|
25 |
+
- **Disgust (2)**
|
26 |
+
- **Sadness (3)**
|
27 |
+
- **Joy (4)**
|
28 |
+
- **Enthusiasm (5)**
|
29 |
+
- **Hope (6)**
|
30 |
+
- **Pride (7)**
|
31 |
+
- **No emotion (8)**
|
32 |
+
|
33 |
+
### Dataset and Preprocessing
|
34 |
+
The dataset consists of German text first translated into English and then into Slovak. This sequential translation introduces additional linguistic complexity and potential noise. Preprocessing steps included:
|
35 |
+
|
36 |
+
- Normalization to reduce noise introduced during translations.
|
37 |
+
- Undersampling of overrepresented classes, such as "No emotion" and "Anger," to balance the dataset.
|
38 |
+
|
39 |
+
### Evaluation Metrics
|
40 |
+
The model's performance was evaluated using precision, recall, F1-score, and accuracy metrics. Detailed results are as follows:
|
41 |
+
|
42 |
+
| Class | Precision | Recall | F1-Score | Support |
|
43 |
+
|---------------|-----------|--------|----------|---------|
|
44 |
+
| Anger (0) | 0.34 | 0.41 | 0.37 | 777 |
|
45 |
+
| Fear (1) | 0.86 | 0.67 | 0.75 | 776 |
|
46 |
+
| Disgust (2) | 0.95 | 0.92 | 0.93 | 776 |
|
47 |
+
| Sadness (3) | 0.86 | 0.78 | 0.82 | 775 |
|
48 |
+
| Joy (4) | 0.84 | 0.73 | 0.78 | 777 |
|
49 |
+
| Enthusiasm (5)| 0.57 | 0.46 | 0.51 | 776 |
|
50 |
+
| Hope (6) | 0.32 | 0.41 | 0.36 | 777 |
|
51 |
+
| Pride (7) | 0.84 | 0.60 | 0.70 | 776 |
|
52 |
+
| No emotion (8)| 0.48 | 0.59 | 0.53 | 1553 |
|
53 |
+
|
54 |
+
### Overall Metrics
|
55 |
+
- **Accuracy**: 0.61
|
56 |
+
- **Macro Average**: Precision = 0.67, Recall = 0.62, F1-Score = 0.64
|
57 |
+
- **Weighted Average**: Precision = 0.65, Recall = 0.61, F1-Score = 0.63
|
58 |
+
|
59 |
+
### Performance Insights
|
60 |
+
The model shows strong performance in detecting "Disgust" and "Fear," but struggles with "Anger," "Hope," and "No emotion," likely due to the compounded translation noise and subtle emotional cues being lost in the translation process. These results highlight the challenges of training models on sequentially translated text.
|
61 |
+
|
62 |
+
## Model Usage
|
63 |
+
### Applications
|
64 |
+
- Emotion analysis of German texts translated sequentially into English and Slovak for sentiment tracking or research.
|
65 |
+
- Studying cross-linguistic emotion classification in complex multilingual contexts.
|
66 |
+
- Sentiment analysis for Slovak content derived from German source material through intermediate English translations.
|
67 |
+
|
68 |
+
### Limitations
|
69 |
+
- Sequential translation increases the likelihood of noise and inaccuracies, affecting classification performance for subtle emotional states.
|
70 |
+
- The model's accuracy is lower compared to models trained on single-step translations, reflecting the challenges introduced by additional linguistic transformations.
|
71 |
+
|
72 |
+
### Ethical Considerations
|
73 |
+
The use of sequentially machine-translated datasets may result in biases or inaccuracies due to compounded linguistic and cultural nuances being lost in translation. Users should carefully evaluate the model for their specific use case, particularly in sensitive applications such as mental health or social studies.
|
74 |
+
|
75 |
+
### Citation
|
76 |
+
For further information, visit: [uvegesistvan/wildmann_german_proposal_2b_GER_ENG_SLO](#)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|