--- library_name: transformers base_model: vaibhav1/t5-small-samsum_ep5 tags: - generated_from_trainer datasets: - samsum model-index: - name: t5_samsum results: [] --- # t5_samsum This model is a fine-tuned version of [vaibhav1/t5-small-samsum_ep5](https://huggingface.co/vaibhav1/t5-small-samsum_ep5) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.7431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9197 | 1.7470 | 100 | 1.7715 | | 1.8981 | 3.5038 | 200 | 1.7431 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1